Global shape invariants: a solution for 3D free-form object discrimination/identification problem

Abstract A method for solving the 3D object recognition problem is described in this paper. The method uses a new set of global features as discriminant parameters. The general purpose of our approach is to achieve simplicity, speed and efficiency by using global invariants. For this, two new global parameters are introduced, which are invariant to rotation, translation and scaling: canonical length (CL), which provides an indirect measurement of object surface and weighted principal directions (WPDs) corresponding to the meaningful normal directions of the object surface. Abundant experimentation has been conducted with a real world system in order to validate the method.

[1]  Antonio Adán,et al.  A Fast Mesh Deformation Method to Build Spherical Representation Models of 3D Objects , 1998, ACCV.

[2]  Jae-Moon Chung,et al.  Reasoning simplified volumetric shapes for robotic grasping , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[3]  Anselmo Lastra,et al.  Interactive Display of Large NURBS Models , 1996, IEEE Trans. Vis. Comput. Graph..

[4]  Katsushi Ikeuchi,et al.  A spherical representation for the recognition of curved objects , 1993, 1993 (4th) International Conference on Computer Vision.

[5]  Andrew E. Johnson,et al.  Recognizing objects by matching oriented points , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Katsushi Ikeuchi,et al.  Spherical Representations: for EGI to SAI , 1994, Object Representation in Computer Vision.

[7]  Takeo Kanade,et al.  Uncertainty in object pose determination with three light-stripe range measurements , 1995, IEEE Trans. Robotics Autom..

[8]  Chitra Dorai,et al.  COSMOS - A Representation Scheme for 3D Free-Form Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Naokazu Yokoya,et al.  A Robust Method for Registration and Segmentation of Multiple Range Images , 1995, Comput. Vis. Image Underst..

[10]  Berthold K. P. Horn Extended Gaussian images , 1984, Proceedings of the IEEE.

[11]  Hong Zhang,et al.  A constraint-satisfaction approach for 3D vision/touch-based object recognition , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[12]  Dmitry B. Goldgof,et al.  Extracting a Valid Boundary Representation from a Segmented Range Image , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[14]  Harry Shum,et al.  On 3D Shape Synthesis , 1996, Object Representation in Computer Vision.

[15]  K. Boyer,et al.  Creating random structural descriptions of CAD models and determining object classes , 1994, Proceedings of 1994 IEEE 2nd CAD-Based Vision Workshop.

[16]  James J. Little Determining Object Attitude from Extended Gaussian Images , 1985, IJCAI.

[17]  Hervé Delingette,et al.  Simplex meshes: a general representation for 3D shape reconstruction , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Katsushi Ikeuchi,et al.  Toward an assembly plan from observation. I. Task recognition with polyhedral objects , 1994, IEEE Trans. Robotics Autom..

[19]  Martial Hebert,et al.  On 3D shape similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  A. A. Oliver Modelado 3D de formas libres orientado a reconocimiento y posicionamiento de objetos tridimensionales , 1997 .

[21]  Gérard G. Medioni,et al.  Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Peter K. Allen,et al.  Automated tracking and grasping of a moving object with a robotic hand-eye system , 1993, IEEE Trans. Robotics Autom..

[23]  Katsushi Ikeuchi,et al.  The Complex EGI: A New Representation for 3-D Pose Determination , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Katsushi Ikeuchi,et al.  A Spherical Representation for Recognition of Free-Form Surfaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Martial Hebert,et al.  3-D object modeling and recognition for telerobotic manipulation , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.