Quantitative firing pattern phenotyping of hippocampal neuron types

[1]  Giorgio A. Ascoli,et al.  Simple models of quantitative firing phenotypes in hippocampal neurons: Comprehensive coverage of intrinsic diversity , 2019, bioRxiv.

[2]  Stefan Häusler,et al.  Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits , 2019, PLoS Comput. Biol..

[3]  S. Ioppolo,et al.  Combined experimental and modeling study , 2019 .

[4]  Szabolcs Káli,et al.  The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow , 2018, PLoS Comput. Biol..

[5]  Fleur Zeldenrust,et al.  Neural Coding With Bursts—Current State and Future Perspectives , 2018, Front. Comput. Neurosci..

[6]  Brenna Li,et al.  Modeling sources of interlaboratory variability in electrophysiological properties of mammalian neurons. , 2018, Journal of neurophysiology.

[7]  Jeffrey L. Krichmar,et al.  Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types , 2018, Front. Neuroinform..

[8]  Viktor János Oláh,et al.  Single Bursts of Individual Granule Cells Functionally Rearrange Feedforward Inhibition , 2018, The Journal of Neuroscience.

[9]  Idan Segev,et al.  Comprehensive Morpho-Electrotonic Analysis Shows 2 Distinct Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex , 2017, Cerebral cortex.

[10]  H. Eichenbaum The role of the hippocampus in navigation is memory. , 2017, Journal of neurophysiology.

[11]  Christof Koch,et al.  Generalized leaky integrate-and-fire models classify multiple neuron types , 2017, Nature Communications.

[12]  Perry L. Miller,et al.  Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience , 2016, Journal of Computational Neuroscience.

[13]  Ivan Raikov,et al.  Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit , 2016, eLife.

[14]  Giorgio A Ascoli,et al.  Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome , 2016, eNeuro.

[15]  Giorgio A. Ascoli,et al.  Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties , 2016, Brain Informatics.

[16]  E. Hanse,et al.  Neuromodulation of fast‐spiking and non‐fast‐spiking hippocampal CA1 interneurons by human cerebrospinal fluid , 2016, The Journal of physiology.

[17]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[18]  C. L. Rees,et al.  Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus , 2015, eLife.

[19]  A. Zippo,et al.  Quantifying the Number of Discriminable Coincident Dendritic Input Patterns through Dendritic Tree Morphology , 2015, Scientific Reports.

[20]  R. C. Gerkin,et al.  Brain-wide analysis of electrophysiological diversity yields novel categorization of mammalian neuron types. , 2015, Journal of neurophysiology.

[21]  Adam R Ferguson,et al.  Big data from small data: data-sharing in the 'long tail' of neuroscience , 2014, Nature Neuroscience.

[22]  D. Zytnicki,et al.  Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis , 2014, eLife.

[23]  Marlene Bartos,et al.  Synaptic Properties of SOM- and CCK-Expressing Cells in Dentate Gyrus Interneuron Networks , 2014, The Journal of Neuroscience.

[24]  M. Hasselmo Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  Henry Markram,et al.  A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis. , 2013, Cerebral cortex.

[26]  E. Kandel,et al.  Neuroscience thinks big (and collaboratively) , 2013, Nature Reviews Neuroscience.

[27]  Bao-Ming Li,et al.  Stuttering Interneurons Generate Fast and Robust Inhibition onto Projection Neurons with Low Capacity of Short Term Modulation in Mouse Lateral Amygdala , 2013, PloS one.

[28]  J. McDevitt,et al.  A BLUEPRINT FOR , 2013 .

[29]  Kuei Yuan Tseng,et al.  Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence , 2013, Brain Structure and Function.

[30]  Alex M Thomson,et al.  SP–SR interneurones: A novel class of neurones of the CA2 region of the hippocampus , 2012, Hippocampus.

[31]  M. Whittington,et al.  Segregation of Axonal and Somatic Activity During Fast Network Oscillations , 2012, Science.

[32]  M. Witter,et al.  Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex , 2012, Hippocampus.

[33]  M. Witter,et al.  Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex , 2012, Hippocampus.

[34]  Zhiping P. Pang,et al.  Distinct Neuronal Coding Schemes in Memory Revealed by Selective Erasure of Fast Synchronous Synaptic Transmission , 2012, Neuron.

[35]  Charles J. Wilson,et al.  The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons. , 2011, Journal of neurophysiology.

[36]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[37]  Ivan Soltesz,et al.  Cell-Type-Specific CCK2 Receptor Signaling Underlies the Cholecystokinin-Mediated Selective Excitation of Hippocampal Parvalbumin-Positive Fast-Spiking Basket Cells , 2011, The Journal of Neuroscience.

[38]  Ivan Soltesz,et al.  Neurogliaform cells in the molecular layer of the dentate gyrus as feed‐forward γ‐aminobutyric acidergic modulators of entorhinal–hippocampal interplay , 2011, The Journal of comparative neurology.

[39]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[40]  S. Siegelbaum,et al.  Strong CA2 Pyramidal Neuron Synapses Define a Powerful Disynaptic Cortico-Hippocampal Loop , 2010, Neuron.

[41]  Giorgio A. Ascoli,et al.  Local Control of Postinhibitory Rebound Spiking in CA1 Pyramidal Neuron Dendrites , 2010, The Journal of Neuroscience.

[42]  Szabolcs Káli,et al.  Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics , 2010, The Journal of physiology.

[43]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[44]  Ivan Soltesz,et al.  Functional Specificity of Mossy Fiber Innervation of GABAergic Cells in the Hippocampus , 2009, The Journal of Neuroscience.

[45]  G. Ascoli,et al.  Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. , 2009, Journal of neurophysiology.

[46]  Petter Laake,et al.  Recommended tests for association in 2×2 tables , 2009, Statistics in medicine.

[47]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[48]  Colleen E. Clancy,et al.  Ionic Mechanisms of Endogenous Bursting in CA3 Hippocampal Pyramidal Neurons: A Model Study , 2008, PloS one.

[49]  Giorgio A Ascoli,et al.  Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b , 2008, Hippocampus.

[50]  R. Malenka,et al.  Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms , 2008, Neuropsychopharmacology.

[51]  Yuan Gao,et al.  Semilunar Granule Cells: Glutamatergic Neurons in the Rat Dentate Gyrus with Axon Collaterals in the Inner Molecular Layer , 2007, The Journal of Neuroscience.

[52]  N. Spruston,et al.  Dendritic spikes induce single-burst long-term potentiation , 2007, Proceedings of the National Academy of Sciences.

[53]  Tony W Buchanan,et al.  Retrieval of emotional memories. , 2007, Psychological bulletin.

[54]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[55]  Alex M Thomson,et al.  Characterization of Neurons in the CA2 Subfield of the Adult Rat Hippocampus , 2007, The Journal of Neuroscience.

[56]  David Golomb,et al.  Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons , 2007, PLoS Comput. Biol..

[57]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[58]  J. Perrier,et al.  Intrinsic properties shape the firing pattern of ventral horn interneurons from the spinal cord of the adult turtle. , 2006, Journal of neurophysiology.

[59]  David Golomb,et al.  Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. , 2006, Journal of neurophysiology.

[60]  G. Ascoli,et al.  Effects of β-Catenin on Dendritic Morphology and Simulated Firing Patterns in Cultured Hippocampal Neurons , 2006, The Biological Bulletin.

[61]  P. Buckmaster,et al.  Hyperexcitability, Interneurons, and Loss of GABAergic Synapses in Entorhinal Cortex in a Model of Temporal Lobe Epilepsy , 2006, The Journal of Neuroscience.

[62]  G. Ascoli,et al.  Effects of beta-catenin on dendritic morphology and simulated firing patterns in cultured hippocampal neurons. , 2006, The Biological bulletin.

[63]  G. Shepherd,et al.  An integrated approach to classifying neuronal phenotypes , 2005, Nature Reviews Neuroscience.

[64]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[65]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[66]  Hannah Monyer,et al.  Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro , 2005, The Journal of physiology.

[67]  Gordon M Shepherd,et al.  Opinion: an integrated approach to classifying neuronal phenotypes. , 2005, Nature reviews. Neuroscience.

[68]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[69]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[70]  B. McNaughton,et al.  The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats , 1983, Experimental Brain Research.

[71]  Daniel Johnston,et al.  Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons , 1981, Cellular and Molecular Neurobiology.

[72]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[73]  P. Jonas,et al.  Kv3 Potassium Conductance is Necessary and Kinetically Optimized for High-Frequency Action Potential Generation in Hippocampal Interneurons , 2003, The Journal of Neuroscience.

[74]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[75]  Frank C. Hoppensteadt,et al.  Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.

[76]  Idan Segev,et al.  The information efficacy of a synapse , 2002, Nature Neuroscience.

[77]  Alex M Thomson,et al.  Physiological and morphological diversity of immunocytochemically defined parvalbumin‐ and cholecystokinin‐positive interneurones in CA1 of the adult rat hippocampus , 2002, The Journal of comparative neurology.

[78]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex , 2000, The Journal of comparative neurology.

[79]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[80]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[81]  N Spruston,et al.  Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. , 2000, Journal of neurophysiology.

[82]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[83]  H. Eichenbaum A cortical–hippocampal system for declarative memory , 2000, Nature Reviews Neuroscience.

[84]  Y. Yaari,et al.  Unique Properties of NMDA Receptors Enhance Synaptic Excitation of Radiatum Giant Cells in Rat Hippocampus , 2000, The Journal of Neuroscience.

[85]  M. Botnick,et al.  Part 3 , 2000, Journal of homosexuality.

[86]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex , 2000, The Journal of comparative neurology.

[87]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex , 2000 .

[88]  L. Hayward,et al.  Electrophysiological properties of rat lateral parabrachial neurons in vitro. , 1999, The American journal of physiology.

[89]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[90]  N Spruston,et al.  Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. , 1998, Journal of neurophysiology.

[91]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[92]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[93]  N. Spruston,et al.  Interneurons in the stratum lucidum of the rat hippocampus: An anatomical and electrophysiological characterization , 1997, The Journal of comparative neurology.

[94]  Dennis A. Turner,et al.  Interneurons of the Dentate–Hilus Border of the Rat Dentate Gyrus: Morphological and Electrophysiological Heterogeneity , 1997, The Journal of Neuroscience.

[95]  M. Zhao,et al.  Alterations in Frequency Coding and Activity Dependence of Excitability in Cultured Neurons of Drosophila Memory Mutants , 1997, The Journal of Neuroscience.

[96]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[97]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[98]  D Ferster,et al.  Cracking the Neuronal Code , 1995, Science.

[99]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  R. Sutherland,et al.  Configural association theory and the hippocampal formation: An appraisal and reconfiguration , 1995, Hippocampus.

[101]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[102]  G. Buzsáki,et al.  Inhibitory CA1-CA3-hilar region feedback in the hippocampus. , 1994, Science.

[103]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[104]  P. Somogyi,et al.  A High Degree of Spatial Selectivity in the Axonal and Dendritic Domains of Physiologically Identified Local‐circuit Neurons in the Dentate Gyms of the Rat Hippocampus , 1993, The European journal of neuroscience.

[105]  H. Eichenbaum,et al.  The hippocampus--what does it do? , 1992, Behavioral and neural biology.

[106]  David K. Bilkey,et al.  Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells , 1990, Brain Research.

[107]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[108]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[109]  R. Sutherland,et al.  Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia , 1989, Psychobiology.

[110]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[111]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[112]  D. Prince,et al.  Variations in electrophysiological properties of hippocampal neurons in different subfields , 1982, Brain Research.

[113]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[114]  G. A. Barnard,et al.  THE MEANING OF A SIGNIFICANCE LEVEL , 1947 .

[115]  G. Barnard Significance tests for 2 X 2 tables. , 1947, Biometrika.

[116]  E. Adrian,et al.  The impulses produced by sensory nerve endings , 1926, The Journal of physiology.

[117]  E. Adrian,et al.  The impulses produced by sensory nerve endings , 1926, The Journal of physiology.