Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation

[1]  Pierre Yger,et al.  Network-State Modulation of Power-Law Frequency-Scaling in Visual Cortical Neurons , 2009, PLoS Comput. Biol..

[2]  Li I. Zhang,et al.  Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording , 2009, The Journal of Neuroscience.

[3]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[4]  J. Assad,et al.  Beyond Poisson: Increased Spike-Time Regularity across Primate Parietal Cortex , 2009, Neuron.

[5]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[6]  T. Naito,et al.  Surround suppression sharpens orientation tuning in the cat primary visual cortex , 2009, The European journal of neuroscience.

[7]  D. Tolhurst,et al.  The Sparseness of Neuronal Responses in Ferret Primary Visual Cortex , 2009, The Journal of Neuroscience.

[8]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[9]  Vincent Jacob,et al.  Emergent Properties of Tactile Scenes Selectively Activate Barrel Cortex Neurons , 2008, Neuron.

[10]  Garrett B Stanley,et al.  Timing Precision in Population Coding of Natural Scenes in the Early Visual System , 2008, PLoS biology.

[11]  Harvey A Swadlow,et al.  Task difficulty modulates the activity of specific neuronal populations in primary visual cortex , 2008, Nature Neuroscience.

[12]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[13]  S. Laughlin,et al.  Energy limitation as a selective pressure on the evolution of sensory systems , 2008, Journal of Experimental Biology.

[14]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[15]  Guangying K. Wu,et al.  Lateral Sharpening of Cortical Frequency Tuning by Approximately Balanced Inhibition , 2008, Neuron.

[16]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[17]  Arthur R. Houweling,et al.  Behavioural report of single neuron stimulation in somatosensory cortex , 2008, Nature.

[18]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[19]  Jaime de la Rocha,et al.  Supplementary Information for the article ‘ Correlation between neural spike trains increases with firing rate ’ , 2007 .

[20]  M. Carandini,et al.  Temporal properties of surround suppression in cat primary visual cortex , 2007, Visual Neuroscience.

[21]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[22]  Feng Qi Han,et al.  Rapid learning in cortical coding of visual scenes , 2007, Nature Neuroscience.

[23]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[24]  Matteo Carandini,et al.  Melting the Iceberg: Contrast Invariance in Visual Cortex , 2007, Neuron.

[25]  Ad Aertsen,et al.  Spike Timing and Reliability in Cortical Pyramidal Neurons: Effects of EPSC Kinetics, Input Synchronization and Background Noise on Spike Timing , 2007, PloS one.

[26]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[27]  C. Gray,et al.  Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. , 2007, Journal of neurophysiology.

[28]  Thierry Bal,et al.  Calculating event-triggered average synaptic conductances from the membrane potential. , 2006, Journal of neurophysiology.

[29]  M. DeWeese,et al.  Non-Gaussian Membrane Potential Dynamics Imply Sparse, Synchronous Activity in Auditory Cortex , 2006, The Journal of Neuroscience.

[30]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[31]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[32]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[33]  D. Contreras,et al.  Balanced Excitation and Inhibition Determine Spike Timing during Frequency Adaptation , 2006, The Journal of Neuroscience.

[34]  Feng Liu,et al.  Propagation of firing rate in a feed-forward neuronal network. , 2006, Physical review letters.

[35]  A. Angelucci,et al.  Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. , 2006, Progress in brain research.

[36]  P. Lennie,et al.  Early and Late Mechanisms of Surround Suppression in Striate Cortex of Macaque , 2005, The Journal of Neuroscience.

[37]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[38]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[39]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[40]  Feng Qi Han,et al.  Cortical Sensitivity to Visual Features in Natural Scenes , 2005, PLoS biology.

[41]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[42]  Kelvin E. Jones,et al.  Neuronal variability: noise or part of the signal? , 2005, Nature Reviews Neuroscience.

[43]  Y. Dan,et al.  Stimulation of non‐classical receptive field enhances orientation selectivity in the cat , 2005, The Journal of physiology.

[44]  J. Gallant,et al.  Predicting neuronal responses during natural vision , 2005, Network.

[45]  R. Desimone,et al.  Selectivity and sparseness in the responses of striate complex cells , 2005, Vision Research.

[46]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[47]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[48]  P. Heggelund,et al.  Response variability and orientation discrimination of single cells in striate cortex of cat , 1978, Experimental Brain Research.

[49]  J. Gallant,et al.  Goal-Related Activity in V4 during Free Viewing Visual Search Evidence for a Ventral Stream Visual Salience Map , 2003, Neuron.

[50]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[51]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[52]  L. Palmer,et al.  Response to Contrast of Electrophysiologically Defined Cell Classes in Primary Visual Cortex , 2003, The Journal of Neuroscience.

[53]  Idan Segev,et al.  On the Transmission of Rate Code in Long Feedforward Networks with Excitatory–Inhibitory Balance , 2003, The Journal of Neuroscience.

[54]  Eero P. Simoncelli Vision and the statistics of the visual environment , 2003, Current Opinion in Neurobiology.

[55]  Maria V. Sanchez-Vives,et al.  Adaptation and temporal decorrelation by single neurons in the primary visual cortex. , 2003, Journal of neurophysiology.

[56]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[57]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[58]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[59]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[60]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[61]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[62]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[63]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[64]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[65]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  K. D. Punta,et al.  An ultra-sparse code underlies the generation of neural sequences in a songbird , 2002 .

[67]  A. Sillito,et al.  Surround suppression in primate V1. , 2001, Journal of neurophysiology.

[68]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[69]  D. Ferster,et al.  Membrane Potential and Conductance Changes Underlying Length Tuning of Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[70]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001, Network.

[71]  J. Gallant,et al.  Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. , 2001, Network.

[72]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[73]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[74]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[75]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[76]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[77]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[78]  C. Gray,et al.  Physiological properties of inhibitory interneurons in cat striate cortex. , 1997, Cerebral cortex.

[79]  Maria V. Sanchez-Vives,et al.  Influence of low and high frequency inputs on spike timing in visual cortical neurons. , 1997, Cerebral cortex.

[80]  D. Snodderly,et al.  Response Variability of Neurons in Primary Visual Cortex (V1) of Alert Monkeys , 1997, The Journal of Neuroscience.

[81]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[82]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[83]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[84]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[85]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[86]  U. Eysel,et al.  Functional and Structural Topography of Horizontal Inhibitory Connections in Cat Visual Cortex , 1993, The European journal of neuroscience.

[87]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[88]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[89]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[90]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[91]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[92]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[93]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.