Linearity of synaptic interactions in the assembly of receptive fields in cat visual cortex

[1]  L. Palmer,et al.  Organization of simple cell responses in the three-dimensional (3-D) frequency domain , 1994, Visual Neuroscience.

[2]  L. Palmer,et al.  Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat , 1994, Visual Neuroscience.

[3]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[4]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[5]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[6]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[7]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[8]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[9]  T. Poggio,et al.  Multiplying with synapses and neurons , 1992 .

[10]  A. L. Humphrey,et al.  Temporal-frequency tuning of direction selectivity in cat visual cortex , 1992, Visual Neuroscience.

[11]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  C. Koch,et al.  Synaptic background activity influences spatiotemporal integration in single pyramidal cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[14]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[15]  D. Tolhurst,et al.  Evaluation of a linear model of directional selectivity in simple cells of the cat's striate cortex , 1991, Visual Neuroscience.

[16]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[17]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[18]  P. Lennie,et al.  Contrast adaptation in striate cortex of macaque , 1989, Vision Research.

[19]  Michael J. Korenberg,et al.  Identification of Intensive Nonlinearities in Cascade Models of Visual Cortex and its Relation to Cell Classification , 1989 .

[20]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[21]  D. Whitteridge,et al.  Selective responses of visual cortical cells do not depend on shunting inhibition , 1988, Nature.

[22]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[23]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[25]  D. Oertel,et al.  Use of brain slices in the study of the auditory system: spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. , 1985, The Journal of the Acoustical Society of America.

[26]  T. Poggio,et al.  The synaptic veto mechanism: does it underlie direction and orientation selectivity in the visual cortex , 1985 .

[27]  P. Lennie,et al.  Spatial frequency analysis in the visual system. , 1985, Annual review of neuroscience.

[28]  S. Watanabe,et al.  Synaptic mechanisms of directional selectivity in ganglion cells of frog retina as revealed by intracellular recordings. , 1984, The Japanese journal of physiology.

[29]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[32]  P. Marchiafava The responses of retinal ganglion cells to stationary and moving visual stimuli , 1979, Vision Research.

[33]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[34]  P. Somogyi A specific ‘axo-axonal’ interneuron in the visual cortex of the rat , 1977, Brain Research.

[35]  M. Kemali,et al.  On the impregnation by the Golgi method of an entire human brain , 1977, Brain Research.

[36]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[37]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[38]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[39]  Sanford L. Palay,et al.  THE AXON HILLOCK AND THE INITIAL SEGMENT , 1968, The Journal of cell biology.

[40]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.