Multiview Vector-Valued Manifold Regularization for Multilabel Image Classification

In computer vision, image datasets used for classification are naturally associated with multiple labels and comprised of multiple views, because each image may contain several objects (e.g., pedestrian, bicycle, and tree) and is properly characterized by multiple visual features (e.g., color, texture, and shape). Currently, available tools ignore either the label relationship or the view complementarily. Motivated by the success of the vector-valued function that constructs matrix-valued kernels to explore the multilabel structure in the output space, we introduce multiview vector-valued manifold regularization (MV3MR) to integrate multiple features. MV3MR exploits the complementary property of different features and discovers the intrinsic local geometry of the compact support shared by different features under the theme of manifold regularization. We conduct extensive experiments on two challenging, but popular, datasets, PASCAL VOC' 07 and MIR Flickr, and validate the effectiveness of the proposed MV3MR for image classification.

[1]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[2]  Djamel Bouchaffra,et al.  Mapping Dynamic Bayesian Networks to $\alpha$-Shapes: Application to Human Faces Identification Across Ages , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[3]  Jason Weston,et al.  A kernel method for multi-labelled classification , 2001, NIPS.

[4]  Shawn D. Newsam,et al.  Spatial pyramid co-occurrence for image classification , 2011, 2011 International Conference on Computer Vision.

[5]  Xuelong Li,et al.  Negative Samples Analysis in Relevance Feedback , 2007, IEEE Transactions on Knowledge and Data Engineering.

[6]  Jieping Ye,et al.  Hypergraph spectral learning for multi-label classification , 2008, KDD.

[7]  Qiang Chen,et al.  Multi-label visual classification with label exclusive context , 2011, 2011 International Conference on Computer Vision.

[8]  DeLiang Wang,et al.  Texture segmentation using Gaussian-Markov random fields and neural oscillator networks , 2001, IEEE Trans. Neural Networks.

[9]  Yongdong Zhang,et al.  Multiview Spectral Embedding , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[10]  Gang Chen,et al.  Semi-supervised Multi-label Learning by Solving a Sylvester Equation , 2008, SDM.

[11]  Kaizhu Huang,et al.  m-SNE: Multiview Stochastic Neighbor Embedding , 2011, IEEE Trans. Syst. Man Cybern. Part B.

[12]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[13]  Bo Geng,et al.  Manifold Regularized Multi-task Learning for Semi-supervised Multi-label Image Classification , 2013 .

[14]  Fei Wang,et al.  Maximum Margin Multiple Instance Clustering With Applications to Image and Text Clustering , 2011, IEEE Transactions on Neural Networks.

[15]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[16]  Xuelong Li,et al.  Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm , 2006, IEEE Transactions on Multimedia.

[17]  Rong Jin,et al.  Multi-label learning with incomplete class assignments , 2011, CVPR 2011.

[18]  Horst Bischof,et al.  Robust Multi-View Boosting with Priors , 2010, ECCV.

[19]  Tommy W. S. Chow,et al.  Textual and Visual Content-Based Anti-Phishing: A Bayesian Approach , 2011, IEEE Transactions on Neural Networks.

[20]  Silvio Savarese,et al.  Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[21]  M. Kloft,et al.  l p -Norm Multiple Kernel Learning , 2011 .

[22]  David Zhang,et al.  Local Linear Discriminant Analysis Framework Using Sample Neighbors , 2011, IEEE Transactions on Neural Networks.

[23]  Lorenzo Rosasco,et al.  Are Loss Functions All the Same? , 2004, Neural Computation.

[24]  Yong Luo,et al.  Manifold Regularized Multitask Learning for Semi-Supervised Multilabel Image Classification , 2013, IEEE Transactions on Image Processing.

[25]  Zhi-Hua Zhou,et al.  Multi-View Video Summarization , 2010, IEEE Transactions on Multimedia.

[26]  Alexandros Iosifidis,et al.  View-Invariant Action Recognition Based on Artificial Neural Networks , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[27]  Thomas Martinetz,et al.  Simple Method for High-Performance Digit Recognition Based on Sparse Coding , 2008, IEEE Transactions on Neural Networks.

[28]  Vikas Sindhwani,et al.  Vector-valued Manifold Regularization , 2011, ICML.

[29]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[30]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[31]  Xindong Wu,et al.  Compressed labeling on distilled labelsets for multi-label learning , 2012, Machine Learning.

[32]  Dacheng Tao,et al.  Multi-label Subspace Ensemble , 2012, AISTATS.

[33]  Dacheng Tao,et al.  Labelset anchored subspace ensemble (LASE) for multi-label annotation , 2012, ICMR.

[34]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[35]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[36]  David Masip,et al.  Shared Feature Extraction for Nearest Neighbor Face Recognition , 2008, IEEE Transactions on Neural Networks.

[37]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[38]  Xuelong Li,et al.  Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[40]  Jieping Ye,et al.  A shared-subspace learning framework for multi-label classification , 2010, TKDD.

[41]  Yves Grandvalet,et al.  Y.: SimpleMKL , 2008 .

[42]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[43]  Meng Wang,et al.  Semisupervised Multiview Distance Metric Learning for Cartoon Synthesis , 2012, IEEE Transactions on Image Processing.

[44]  Charles A. Micchelli,et al.  On Learning Vector-Valued Functions , 2005, Neural Computation.

[45]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[46]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[47]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[48]  John Langford,et al.  Multi-Label Prediction via Compressed Sensing , 2009, NIPS.

[49]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[50]  Lihi Zelnik-Manor,et al.  Large Scale Max-Margin Multi-Label Classification with Priors , 2010, ICML.

[51]  Alexander Zien,et al.  lp-Norm Multiple Kernel Learning , 2011, J. Mach. Learn. Res..

[52]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[53]  Jieping Ye,et al.  Canonical Correlation Analysis for Multilabel Classification: A Least-Squares Formulation, Extensions, and Analysis , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Ivor W. Tsang,et al.  Laplacian Embedded Regression for Scalable Manifold Regularization , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[55]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[56]  Marco Gori,et al.  On the time complexity of regularized least square , 2011, Italian Workshop on Neural Nets.

[57]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[58]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[59]  V. Strassen Gaussian elimination is not optimal , 1969 .

[60]  Cordelia Schmid,et al.  Multimodal semi-supervised learning for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[61]  Stefanos Zafeiriou,et al.  Regularized Kernel Discriminant Analysis With a Robust Kernel for Face Recognition and Verification , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[62]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[63]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..