Multiplication and stimulus invariance in a looming-sensitive neuron

Multiplicative operations and invariance of neuronal responses are thought to play important roles in the processing of neural information in many sensory systems. Yet the biophysical mechanisms that underlie both multiplication and invariance of neuronal responses in vivo, either at the single cell or at the network level, remain to a large extent unknown. Recent work on an identified neuron in the locust visual system (the LGMD neuron) that responds well to objects looming on a collision course towards the animal suggests that this cell represents a good model to investigate the biophysical basis of multiplication and invariance at the single neuron level. Experimental and theoretical results are consistent with multiplication being implemented by subtraction of two logarithmic terms followed by exponentiation via active membrane conductances, according to a x 1/b = exp(log(a) - log(b)). Invariance appears to be in part due to non-linear integration of synaptic inputs within the dendritic tree of this neuron.

[1]  J. Bacon,et al.  Identified octopaminergic neurons provide an arousal mechanism in the locust brain. , 1995, Journal of neurophysiology.

[2]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M O'shea,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. I. Effects of simple incremental and decremental stimuli in light and dark adapted animals. , 1976, The Journal of experimental biology.

[4]  C. Rowell,et al.  Saccadic suppression by corollary discharge in the locust , 1979, Nature.

[5]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[6]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[7]  C. I. Miles,et al.  Temperature compensation in the nervous system of the grasshopper , 1992 .

[8]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[9]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  Richard H Masland,et al.  Functional inhibition in direction-selective retinal ganglion cells: spatiotemporal extent and intralaminar interactions. , 2002, Journal of neurophysiology.

[11]  M. Sanders Handbook of Sensory Physiology , 1975 .

[12]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[13]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Schlotterer Response of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli , 1977 .

[15]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[16]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[17]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[18]  T. Weis-Fogh,et al.  BIOLOGY AND PHYSICS OF LOCUST FLIGHT. 8. LIFT AND METABOLIC RATE OF FLYING LOCUSTS. , 1964, The Journal of experimental biology.

[19]  M Egelhaaf,et al.  Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo. , 2000, Journal of neurophysiology.

[20]  G A Horridge,et al.  The separation of visual axes in apposition compound eyes. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Johannes M. Zanker,et al.  Speed tuning in elementary motion detectors of the correlation type , 1999, Biological Cybernetics.

[22]  Gerd Leitinger,et al.  Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine , 2000, The Journal of comparative neurology.

[23]  Barry A. Trimmer,et al.  Current excitement from insect muscarinic receptors , 1995, Trends in Neurosciences.

[24]  D. Sattelle,et al.  Pharmacological and biochemical properties of insect GABA receptors. , 1990, Trends in pharmacological sciences.

[25]  Michael O'Shea,et al.  The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neurone , 1974, Journal of comparative physiology.

[26]  R. M. Robertson,et al.  Retinal image size triggers obstacle avoidance in flying locusts , 1993, Naturwissenschaften.

[27]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[28]  M O'shea,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. II. response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. , 1976, The Journal of experimental biology.

[29]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[30]  F. Rind,et al.  Neural network based on the input organization of an identified neuron signaling impending collision. , 1996, Journal of neurophysiology.

[31]  W. J. Heitler Suppression of a Locust Visual Interneurone (DCMD) During Defensive Kicking , 1983 .

[32]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[33]  K. Pearson,et al.  Correlation of variability in structure with variability in synaptic connections of an identified interneuron in locusts , 1979, The Journal of comparative neurology.

[34]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[35]  C. Rowell,et al.  The orthopteran descending movement detector (DMD) neurones: a characterisation and review , 1971, Zeitschrift für vergleichende Physiologie.

[36]  C. Rowell,et al.  Variable Responsiveness of a Visual Interneurone in the Free-Moving Locust, and its Relation to Behaviour and Arousal , 1971 .

[37]  B. Frost,et al.  Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons , 1998, Nature Neuroscience.

[38]  H. Gras,et al.  Types, numbers and distribution of synapses on the dendritic tree of an identified visual interneuron in the brain of the locust , 1999, Cell and Tissue Research.

[39]  M. O'Shea,et al.  Protection from habituation by lateral inhibition , 1975, Nature.

[40]  C. H. Fraser Rowell,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. , 1977, The Journal of experimental biology.

[41]  D. N. Reye,et al.  WING MOVEMENTS ASSOCIATED WITH COLLISIONAVOIDANCE MANOEUVRES DURING FLIGHT IN THE LOCUST LOCUSTA MIGRATORIA , 1992 .

[42]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[43]  W. J. Heitler,et al.  Triggering of locust jump by multimodal inhibitory interneurons. , 1980, Journal of neurophysiology.

[44]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[46]  Michael O'Shea,et al.  The Anatomy of a Locust Visual Interneurone; the Descending Contralateral Movement Detector , 1974 .

[47]  F C Rind,et al.  Intracellular characterization of neurons in the locust brain signaling impending collision. , 1996, Journal of neurophysiology.

[48]  R. Satterlie,et al.  SHORT COMMUNICATION STRUCTURAL VARIABILITY OF AN IDENTIFIED INTERNEURONE IN LOCUSTS FROM A WILD POPULATION , 1985 .

[49]  M. Burrows The Neurobiology of an Insect Brain , 1996 .

[50]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[51]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[52]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[53]  J. C. Anderson,et al.  Dendritic asymmetry cannot account for directional responses of neurons in visual cortex , 1999, Nature Neuroscience.

[54]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[55]  K. Kirschfeld,et al.  Identification of optic lobe neurons of locusts by video films , 1990, Biological Cybernetics.

[56]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[57]  N. J. Strausfeld,et al.  Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .

[58]  K. Wiese,et al.  Sensory Systems of Arthropods , 1993 .

[59]  M. Burrows,et al.  Connections between descending visual interneurons and metathoracic motoneurons in the locust , 1973, Journal of comparative physiology.

[60]  John R. Gray,et al.  Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts , 2001, Journal of Comparative Physiology A.

[61]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[62]  A. Borst,et al.  Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. , 1993, Journal of neurophysiology.

[63]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[64]  P Cavanagh,et al.  Size and Position Invariance in the Visual System , 1978, Perception.

[65]  Holger G. Krapp,et al.  A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons , 1997, Vision Research.

[66]  Simon B. Laughlin,et al.  Form and function in retinal processing , 1987, Trends in Neurosciences.

[67]  P. Simmons,et al.  Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. , 1992, Journal of neurophysiology.

[68]  P. Simmons,et al.  Local circuit for the computation of object approach by an identified visual neuron in the locust , 1998, The Journal of comparative neurology.

[69]  Robert M. Olberg,et al.  Is the Locust DCMD A Looming Detector , 1982 .

[70]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[71]  C. H. F. Rowell,et al.  Boredom and Attention in a Cell in the Locust Visual System , 1974 .

[72]  Hongjian Xu,et al.  Neural parameters contributing to temperature compensation in the flight CPG of the locust,Locusta migratoria , 1996, Brain Research.

[73]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[74]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[75]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[76]  G. Laurent,et al.  Invariance of Angular Threshold Computation in a Wide-Field Looming-Sensitive Neuron , 2001, The Journal of Neuroscience.

[77]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[78]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[79]  E. Rolls,et al.  Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey , 2004, Experimental Brain Research.

[80]  Williams,et al.  New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision , 1996, The Journal of experimental biology.

[81]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[82]  Mark Mon-Williams,et al.  The many ways of building collision-sensitive neurons , 1999 .

[83]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[84]  B. Batlogg,et al.  Auditory Spatial Receptive Fields Created by Multiplication , 2022 .

[85]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[86]  Christof Koch,et al.  Multiplicative computation by a looming-sensitive neuron , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.