Realistic Biomechanical Simulation and Control of Human Swimming

We address the challenging problem of controlling a complex biomechanical model of the human body to synthesize realistic swimming animation. Our human model includes all of the relevant articular bones and muscles, including 103 bones (163 articular degrees of freedom) plus a total of 823 muscle actuators embedded in a finite element model of the musculotendinous soft tissues of the body that produces realistic deformations. To coordinate the numerous muscle actuators in order to produce natural swimming movements, we develop a biomimetically motivated motor control system based on Central Pattern Generators (CPGs), which learns to produce activation signals that drive the numerous muscle actuators.

[1]  Weiguang Si,et al.  Realistic Simulation and Control of Human Swimming and Underwater Movement , 2013 .

[2]  M. MacKay-Lyons Central pattern generation of locomotion: a review of the evidence. , 2002, Physical therapy.

[3]  Greg Turk,et al.  Articulated swimming creatures , 2011, SIGGRAPH 2011.

[4]  Dimitris N. Metaxas,et al.  Interaction of two-phase flow with animated models , 2008, Graph. Model..

[5]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for human locomotion , 1995, Biological Cybernetics.

[6]  Nipun Kwatra,et al.  Fluid Simulation with Articulated Bodies , 2010, IEEE Transactions on Visualization and Computer Graphics.

[7]  Demetri Terzopoulos,et al.  Realistic modeling for facial animation , 1995, SIGGRAPH.

[8]  Gordon Clapworthy,et al.  An Anatomy-Based Approach to Human Muscle Modeling and Deformation , 2002, IEEE Trans. Vis. Comput. Graph..

[9]  Demetri Terzopoulos,et al.  Automated learning of muscle-actuated locomotion through control abstraction , 1995, SIGGRAPH.

[10]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[11]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[12]  Demetri Terzopoulos,et al.  Spline joints for multibody dynamics , 2008, ACM Trans. Graph..

[13]  J. Lévêque,et al.  Mechanical properties and Young's modulus of human skin in vivo , 2004, Archives of Dermatological Research.

[14]  Eftychios Sifakis,et al.  Realistic Biomechanical Simulation and Control of Human Swimming , 2014, ACM Trans. Graph..

[15]  Vladlen Koltun,et al.  Optimizing locomotion controllers using biologically-based actuators and objectives , 2012, ACM Trans. Graph..

[16]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[17]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[18]  Eftychios Sifakis,et al.  Simulation of complex nonlinear elastic bodies using lattice deformers , 2012, ACM Trans. Graph..

[19]  Andrej Gams,et al.  On-line learning and modulation of periodic movements with nonlinear dynamical systems , 2009, Auton. Robots.

[20]  Karan Singh,et al.  Layered dynamic control for interactive character swimming , 2004, SCA '04.

[21]  Ronald Fedkiw,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Creature Control in a Fluid Environment , 2022 .

[22]  Demetri Terzopoulos,et al.  Heads up!: biomechanical modeling and neuromuscular control of the neck , 2006, ACM Trans. Graph..

[23]  Kazunori Hase,et al.  Human gait simulation with a neuromusculoskeletal model and evolutionary computation , 2003, Comput. Animat. Virtual Worlds.

[24]  Christopher G. Atkeson,et al.  Constructive Incremental Learning from Only Local Information , 1998, Neural Computation.

[25]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[26]  Taku Komura,et al.  Creating and retargetting motion by the musculoskeletal human body model , 2000, The Visual Computer.

[27]  Demetri Terzopoulos,et al.  Artificial fishes: physics, locomotion, perception, behavior , 1994, SIGGRAPH.

[28]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[29]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[30]  Hans-Peter Seidel,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Construction and Animation of Anatomically Based Human Hand Models , 2022 .

[31]  S. Delp,et al.  Three-Dimensional Representation of Complex Muscle Architectures and Geometries , 2005, Annals of Biomedical Engineering.

[32]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[33]  Y. Nakamura,et al.  Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model , 2005, IEEE Transactions on Robotics.

[34]  Victor B. Zordan,et al.  Breathe easy: Model and control of human respiration for computer animation , 2006, Graph. Model..

[35]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[36]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, ACM Trans. Graph..

[37]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[38]  C. Karen Liu,et al.  Articulated swimming creatures , 2011, ACM Trans. Graph..

[39]  Jirí Zára,et al.  Geometric skinning with approximate dual quaternion blending , 2008, TOGS.

[40]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for human locomotion , 1995, Biological Cybernetics.

[41]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[42]  Sung-Hee Lee,et al.  Spline joints for multibody dynamics , 2008, SIGGRAPH 2008.

[43]  Dimitris N. Metaxas,et al.  Paper Title : Interaction of multiphase flow with animated models , 2007 .

[44]  A. Ijspeert,et al.  From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model , 2007, Science.

[45]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[46]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .

[47]  Demetri Terzopoulos,et al.  Heads up!: biomechanical modeling and neuromuscular control of the neck , 2006, SIGGRAPH 2006.

[48]  Eftychios Sifakis,et al.  An efficient multigrid method for the simulation of high-resolution elastic solids , 2010, TOGS.

[49]  Ludovic Righetti,et al.  Programmable central pattern generators: an application to biped locomotion control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[50]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[51]  Eugene Fiume,et al.  Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion , 2005, SCA '05.