On a Representation of Friction in Configuration Space

This article provides a geometric representation of friction for a rigid planar part with two translational and one rotational degrees of freedom. The article constructs a generalized friction cone by imbedding into the part's configuration space the force constraints that define the classic Coulomb friction cone in real space. The resulting representation provides a simple geometric method for determining the possible motions of a part subjected to an applied force and torque. The representation has been used both for simulating part motions and for planning assem bly operations. The approach generalizes to the six-dimensional configuration space of a three-dimensional part.

[1]  Samuel Hunt Drake,et al.  Using compliance in lieu of sensory feedback for automatic assembly. , 1978 .

[2]  SimunoviÄ SimunoviÄ,et al.  An information approach to parts mating , 1979 .

[3]  Tomás Lozano-Pérez,et al.  Automatic Planning of Manipulator Transfer Movements , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Per Lötstedt Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .

[5]  Daniel E. Whitney,et al.  Quasi-Static Assembly of Compliantly Supported Rigid Parts , 1982 .

[6]  Per Lötstedt Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints , 1982 .

[7]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[8]  Michael A. Erdmann,et al.  On Motion Planning with Uncertainty , 1984 .

[9]  Ronald S. Fearing,et al.  Simplified Grasping and Manipulation with Dextrous Robot Hands , 1984, 1984 American Control Conference.

[10]  Mark R. Cutkosky,et al.  Robotic grasping and fine manipulation , 1985 .

[11]  Michael E. Caine,et al.  Chamferless assembly of rectangular parts in two and three dimensions , 1985 .

[12]  Bernard Roth,et al.  Analysis of Multifingered Hands , 1986 .

[13]  Arthur C. Sanderson,et al.  Manipulation of a sliding object , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[14]  Van-Duc Nguyen,et al.  Constructing force-closure grasps , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[15]  E. Haug,et al.  Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion—I theory , 1986 .

[16]  Matthew T. Mason,et al.  Mechanics and Planning of Manipulator Pushing Operations , 1986 .

[17]  V. T. Rajan,et al.  Dynamics of a rigid body in frictional contact with rigid walls: Motion in two dimensions , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[18]  Yu Wang,et al.  Modeling impact dynamics for robotic operations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[19]  Arthur C. Sanderson,et al.  Planning robotic manipulation strategies for sliding objects , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[20]  Russell H. Taylor,et al.  Subassembly Stability , 1988, AAAI.

[21]  Jeffrey C. Trinkle,et al.  An Investigation of Frictionless Enveloping Grasping in the Plane , 1988, Int. J. Robotics Res..

[22]  Randy C. Brost,et al.  Automatic Grasp Planning in the Presence of Uncertainty , 1988, Int. J. Robotics Res..

[23]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[24]  David J. Montana,et al.  The Kinematics of Contact and Grasp , 1988, Int. J. Robotics Res..

[25]  Robert H. Sturges,et al.  A Three-Dimensional Assembly Task Quantification with Application to Machine Dexterity , 1988, Int. J. Robotics Res..

[26]  Yu Wang,et al.  On the inconsistency of rigid-body frictional planar mechanics , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[27]  Andy Ruina,et al.  Limit surface and moment function descriptions of planar sliding , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[28]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[29]  A. Ruina,et al.  Planar sliding with dry friction Part 1. Limit surface and moment function , 1991 .

[30]  Randy C. Brost,et al.  Graphical analysis of planar rigid-body dynamics with multiple frictional contacts , 1991 .

[31]  A. Ruina,et al.  Planar sliding with dry friction Part 2. Dynamics of motion , 1991 .

[32]  Yin-Tien Wang,et al.  Dynamics of rigid bodies undergoing multiple frictional contacts , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[33]  Jeffrey C. Trinkle,et al.  On the stability and instantaneous velocity of grasped frictionless objects , 1992, IEEE Trans. Robotics Autom..

[34]  Randy C. Brost,et al.  Analysis and planning of planar manipulation tasks , 1992 .

[35]  Kevin M. Lynch,et al.  The mechanics of fine manipulation by pushing , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[36]  Matthew T. Mason,et al.  Posing Polygonal Objects in the Plane by Pushing , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[37]  Pierre E. Dupont,et al.  The effect of Coulomb friction on the existence and uniqueness of the forward dynamics problem , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[38]  James C. Alexander,et al.  Bounds on the Friction-Dominated Motion of a Pushed Object , 1993, Int. J. Robotics Res..

[39]  Kevin M. Lynch,et al.  Pulling by Pushing, Slip With Infinite Friction, and Perfectly Rough Surfaces , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.