Information-rich Path Planning with General Constraints using Rapidly-exploring Random Trees

This paper introduces the Information-rich Rapidly-exploring Random Tree (IRRT), an extension of the RRT algorithm that embeds information collection as predicted using Fisher Information Matrices. The primary contribution of this algorithm is target-based information maximization in general (possibly heavily constrained) environments, with complex vehicle dynamic constraints and sensor limitations, including limited resolution and narrow eld-of-view. An extension of IRRT for multi-agent missions is also presented. IRRT is distinguished from previous solutions strategies by its computational tractability and general constraint characterization. A progression of simulation results demonstrates that this implementation can generate complex target-tracking behaviors from a simple model of the trade-o between information gathering and goal arrival.

[1]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  C. Zheng,et al.  ; 0 ; , 1951 .

[4]  A. Rényi On Measures of Entropy and Information , 1961 .

[5]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[6]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[7]  Harold W. Sorenson,et al.  On the development of practical nonlinear filters , 1974, Inf. Sci..

[8]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Jason L. Speyer,et al.  Estimation enhancement by trajectory modulation for homing missiles , 1984 .

[10]  P. T. Liu,et al.  An optimum approach in target tracking with bearing measurements , 1988 .

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[13]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[14]  Hugh F. Durrant-Whyte,et al.  A Fully Decentralized Multi-Sensor System For Tracking and Surveillance , 1993, Int. J. Robotics Res..

[15]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[16]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[17]  J.P. Le Cadre,et al.  Optimization of the observer motion for bearings-only target motion analysis , 1996, Proceeding of 1st Australian Data Fusion Symposium.

[18]  J.-P. Le Cadre Optimization of the observer motion for bearings-only target motion analysis , 1997 .

[19]  J.P. Le Cadre Optimization of the observer motion for bearings-only target motion analysis , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[20]  J. Le Cadre,et al.  Discrete-time observability and estimability analysis for bearings-only target motion analysis , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[22]  J. Passerieux,et al.  Optimal observer maneuver for bearings-only tracking , 1998 .

[23]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[24]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[25]  Y. Oshman,et al.  Optimization of observer trajectories for bearings-only target localization , 1999 .

[26]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[27]  W. Koch,et al.  Ground target tracking with STAP radar , 2001 .

[28]  D. Pollard A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .

[29]  J. D. Gorman,et al.  Alpha-Divergence for Classification, Indexing and Retrieval (Revised 2) , 2002 .

[30]  Alexei Makarenko,et al.  Information based adaptive robotic exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Ben Grocholsky,et al.  Information-Theoretic Control of Multiple Sensor Platforms , 2002 .

[32]  Wolfram Burgard,et al.  Exploring Unknown Environments with Mobile Robots using Coverage Maps , 2003, IJCAI.

[33]  Eric W. Frew,et al.  Observer trajectory generation for target-motion estimation using monocular vision , 2003 .

[34]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[35]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[36]  Gamini Dissanayake,et al.  Multi-Step Look-Ahead Trajectory Planning in SLAM: Possibility and Necessity , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[37]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[38]  Alfred O. Hero,et al.  Sensor management using an active sensing approach , 2005, Signal Process..

[39]  J.K. Hedrick,et al.  Convoy protection using multiple unmanned aerial vehicles: organization and coordination , 2005, Proceedings of the 2005, American Control Conference, 2005..

[40]  P. Trodden,et al.  Robust distributed model predictive control using tubes , 2006, 2006 American Control Conference.

[41]  Mubarak Shah,et al.  Autonomous target following by unmanned aerial vehicles , 2006, SPIE Defense + Commercial Sensing.

[42]  Timothy W. McLain,et al.  Vision-based Target Geo-location using a Fixed-wing Miniature Air Vehicle , 2006, J. Intell. Robotic Syst..

[43]  Francesco Bullo,et al.  Optimal sensor placement and motion coordination for target tracking , 2006, Autom..

[44]  Mark E. Campbell,et al.  Planning for Cooperative Multi-vehicle Reconnaissance , 2007, J. Aerosp. Comput. Inf. Commun..

[45]  Mark Campbell,et al.  Optimal Cooperative Reconnaissance Using Multiple Vehicles , 2007 .

[46]  J. Karl Hedrick,et al.  INFORMATION-THEORETIC SENSOR MOTION CONTROL FOR DISTRIBUTED ESTIMATION , 2007 .

[47]  Emilio Frazzoli,et al.  Efficient sensor coverage for acoustic localization , 2007, 2007 46th IEEE Conference on Decision and Control.

[48]  Alfred O. Hero,et al.  An Information-Based Approach to Sensor Management in Large Dynamic Networks , 2007, Proceedings of the IEEE.

[49]  Kristine L. Bell,et al.  Optimal Observer Maneuver for BearingsOnly Tracking , 2007 .

[50]  Jonathan P. How,et al.  Motion Planning in Complex Environments using Closed-loop Prediction , 2008 .

[51]  Jonathan P. How,et al.  Motion planning for urban driving using RRT , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  P.T. Kabamba,et al.  Path planning for cooperative time-optimal information collection , 2008, 2008 American Control Conference.

[53]  Nicholas Roy,et al.  Planning in information space for a quadrotor helicopter in a GPS-denied environment , 2008, 2008 IEEE International Conference on Robotics and Automation.

[54]  B. Bethke,et al.  Real-time indoor autonomous vehicle test environment , 2008, IEEE Control Systems.

[55]  Eric N. Johnson,et al.  Stochastic Guidance Design for UAV Vision-Based Control Applications , 2008 .

[56]  Branko Ristic,et al.  Information driven localisation of a radiological point source , 2008, Inf. Fusion.

[57]  Paul Scerri,et al.  Path planning for autonomous information collecting vehicles , 2008, 2008 11th International Conference on Information Fusion.

[58]  George J. Pappas,et al.  On trajectory optimization for active sensing in Gaussian process models , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[59]  Eric W. Frew Information-Theoretic Integration of Sensing and Communication for Active Robot Networks , 2009, Mob. Networks Appl..

[60]  Sameera S. Ponda,et al.  Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles , 2009 .

[61]  Han-Lim Choi,et al.  Adaptive sampling and forecasting with mobile sensor networks , 2009 .

[62]  Jonathan P. How,et al.  Real-Time Motion Planning With Applications to Autonomous Urban Driving , 2009, IEEE Transactions on Control Systems Technology.

[63]  Nicholas Roy,et al.  Efficient POMDP Forward Search by Predicting the Posterior Belief Distribution , 2009 .

[64]  Ruijie He,et al.  Semi-conditional planners for efficient planning under uncertainty with macro-actions , 2010 .

[65]  Keith D. Kastella,et al.  Foundations and Applications of Sensor Management , 2010 .

[66]  Emilio Frazzoli,et al.  Bounds on tracking error using closed-loop rapidly-exploring random trees , 2010, Proceedings of the 2010 American Control Conference.

[67]  Zhaodan Kong,et al.  A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance , 2010, J. Intell. Robotic Syst..

[68]  Mark R. Morelande,et al.  Information driven search for point sources of gamma radiation , 2010, Signal Process..

[69]  Claire J. Tomlin,et al.  Mobile Sensor Network Control Using Mutual Information Methods and Particle Filters , 2010, IEEE Transactions on Automatic Control.