Actionable information in vision

A notion of visual information is introduced as the complexity not of the raw images, but of the images after the effects of nuisance factors such as viewpoint and illumination are discounted. It is rooted in ideas of J. J. Gibson, and stands in contrast to traditional information as entropy or coding length of the data regardless of its use, and regardless of the nuisance factors affecting it. The non-invertibility of nuisances such as occlusion and quantization induces an “information gap” that can only be bridged by controlling the data acquisition process. Measuring visual information entails early vision operations, tailored to the structure of the nuisances so as to be “lossless” with respect to visual decision and control tasks (as opposed to data transmission and storage tasks implicit in traditional information theory). These ideas are illustrated on visual exploration, whereby a “Shannonian Explorer” navigates unaware of the structure of the physical space surrounding it, while a “Gibsonian Explorer” is guided by the topology of the environment, despite measuring only images of it, without performing 3D reconstruction. Our operational definition of visual information suggests desirable properties that a visual representation should possess to best accomplish vision-based decision and control tasks.

[1]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[2]  Stefano Soatto,et al.  Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.

[3]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[4]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[5]  Frank P. Ferrie,et al.  Informative Views and Sequential Recognition , 1996, ECCV.

[6]  K. Arrow Information and Economic Behavior , 1973 .

[7]  K. James On Some Possible Characteristics of Information in J. J. Gibson’s Ecological Approach to Visual Perception , 1980 .

[8]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Richard Pito,et al.  A Solution to the Next Best View Problem for Automated Surface Acquisition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Y. Gliklikh Stochastic Differential Equations on Manifolds , 1996 .

[12]  R. Butler The effect of deprivation of visual incentives on visual exploration motivation in monkeys. , 1957, Journal of comparative and physiological psychology.

[13]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision: From Images to Geometric Models , 2003 .

[14]  Bernhard Schölkopf,et al.  Learning view graphs for robot navigation , 1997, AGENTS '97.

[15]  Nicholas J. Butko,et al.  Active perception , 2010 .

[16]  Song-Chun Zhu,et al.  From Information Scaling of Natural Images to Regimes of Statistical Models , 2007 .

[17]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[18]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[19]  Frank P. Ferrie,et al.  From uncertainty to visual exploration , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[20]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[21]  Patrick Péruch,et al.  Acquisition of Spatial Knowledge Through Visual Exploration of Simulated Environments , 1995 .

[22]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[23]  James P. Ostrowski,et al.  Visual motion planning for mobile robots , 2002, IEEE Trans. Robotics Autom..

[24]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[25]  Ruzena Bajcsy,et al.  Occlusions as a Guide for Planning the Next View , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  M. Mead,et al.  Cybernetics , 1953, The Yale Journal of Biology and Medicine.

[27]  Robert D. Nowak,et al.  Human Active Learning , 2008, NIPS.

[28]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[29]  Gregory Dudek,et al.  Effective exploration strategies for the construction of visual maps , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[30]  David J. Kriegman,et al.  Vision-based motion planning and exploration algorithms for mobile robots , 1995, IEEE Trans. Robotics Autom..

[31]  Minh N. Do,et al.  On the Information Rates of the Plenoptic Function , 2007, IEEE Transactions on Information Theory.

[32]  Kiriakos N. Kutulakos,et al.  Global surface reconstruction by purposive control of observer motion , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[33]  M. Golubitsky,et al.  Stable mappings and their singularities , 1973 .

[34]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[36]  Jean-Michel Morel,et al.  Topographic Maps and Local Contrast Changes in Natural Images , 1999, International Journal of Computer Vision.

[37]  James L. Crowley,et al.  Appearance based processes for visual navigation , 1997 .

[38]  J. P. Gould Risk, stochastic preference, and the value of information , 1974 .

[39]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[40]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[41]  Edward M. Riseman,et al.  The non-existence of general-case view-invariants , 1992 .

[42]  Alexei Makarenko,et al.  Information based adaptive robotic exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[44]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[45]  I. Good,et al.  Information, weight of evidence, the singularity between probability measures and signal detection , 1974 .

[46]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[47]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[48]  Joachim Denzler,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Song-Chun Zhu,et al.  Towards a mathematical theory of primal sketch and sketchability , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[50]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[51]  J. Bernardo Expected Information as Expected Utility , 1979 .

[52]  Stefano Soatto,et al.  On the set of images modulo viewpoint and contrast changes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Michael Lewis,et al.  Task-driven camera operations for robotic exploration , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[54]  David W. Jacobs,et al.  In search of illumination invariants , 2001, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[55]  Rodney A. Brooks,et al.  Visual map making for a mobile robot , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[56]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[57]  Kenneth Charles Keeler Map representations and optimal encoding for image segmentation , 1990 .

[58]  Daniel Cremers,et al.  Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation , 2005, International Journal of Computer Vision.

[59]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[60]  Stefano Soatto,et al.  Features for recognition: viewpoint invariance for non-planar scenes , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[61]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[62]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[63]  Kiriakos N. Kutulakos,et al.  Exploring objects by invariant-based tangential viewpoint control , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[64]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[65]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[66]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[67]  David L. Donoho,et al.  Curvelets, multiresolution representation, and scaling laws , 2000, SPIE Optics + Photonics.

[68]  Tony Lindeberg,et al.  Principles for Automatic Scale Selection , 1999 .

[69]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[70]  Narendra Ahuja,et al.  Extracting Subimages of an Unknown Category from a Set of Images , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[71]  Stefano Soatto,et al.  Actionable information in vision , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[72]  I. Heller Contributions to Scientific Research in Management , 1963 .

[73]  Refractor Vision , 2000, The Lancet.

[74]  Gaurav S. Sukhatme,et al.  Efficient exploration without localization , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).