Deformable objects alive!

We present a method for controlling the motions of active deformable characters. As an underlying principle, we require that all motions be driven by internal deformations. We achieve this by dynamically adapting rest shapes in order to induce deformations that, together with environment interactions, result in purposeful and physically-plausible motions. Rest shape adaptation is a powerful concept and we show that by restricting shapes to suitable subspaces, it is possible to explicitly control the motion styles of deformable characters. Our formulation is general and can be combined with arbitrary elastic models and locomotion controllers. We demonstrate the efficiency of our method by animating curve, shell, and solid-based characters whose motion repertoires range from simple hopping to complex walking behaviors.

[1]  Ronald Fedkiw,et al.  Creating and simulating skeletal muscle from the visible human data set , 2005, IEEE Transactions on Visualization and Computer Graphics.

[2]  C. Karen Liu,et al.  Controlling physics-based characters using soft contacts , 2011, ACM Trans. Graph..

[3]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[4]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[5]  R. Fedkiw,et al.  Online Submission ID: papers 0432 Volume Conserving Finite Element Simulations of Deformable Models , 2022 .

[6]  Min-Hyung Choi,et al.  Interactive Motion Control of Deformable Objects Using Localized Optimal Control , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[7]  Anthony A. Maciejewski,et al.  Computational modeling for the computer animation of legged figures , 1985, SIGGRAPH.

[8]  C. Karen Liu,et al.  Articulated swimming creatures , 2011, ACM Trans. Graph..

[9]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, ACM Trans. Graph..

[10]  Nancy S. Pollard,et al.  Fast simulation of skeleton-driven deformable body characters , 2011, TOGS.

[11]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.

[12]  Doug L. James,et al.  Many-worlds browsing for control of multibody dynamics , 2007, SIGGRAPH 2007.

[13]  Christopher D. Twigg,et al.  Optimization for sag-free simulations , 2011, SCA '11.

[14]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[15]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[16]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[17]  Jernej Barbic,et al.  Real-time control of physically based simulations using gentle forces , 2008, ACM Trans. Graph..

[18]  Yoonsang Lee,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[19]  Jehee Lee,et al.  Data-driven biped control , 2010, SIGGRAPH 2010.

[20]  Demetri Terzopoulos,et al.  Artificial fishes: physics, locomotion, perception, behavior , 1994, SIGGRAPH.

[21]  Takeo Igarashi,et al.  ProcDef: Local‐to‐global Deformation for Skeleton‐free Character Animation , 2009, Comput. Graph. Forum.

[22]  Jernej Barbič,et al.  Real-time control of physically based simulations using gentle forces , 2008, SIGGRAPH 2008.

[23]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[24]  Zoran Popovic,et al.  Realistic modeling of bird flight animations , 2003, ACM Trans. Graph..

[25]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[26]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[27]  Markus H. Gross,et al.  PriMo: coupled prisms for intuitive surface modeling , 2006, SGP '06.

[28]  Jovan Popović,et al.  Deformable object animation using reduced optimal control , 2009, SIGGRAPH 2009.

[29]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[30]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[31]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[32]  Martin de Lasa,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[33]  Eitan Grinspun,et al.  TRACKS: toward directable thin shells , 2007, ACM Trans. Graph..

[34]  K. Hormann,et al.  Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.

[35]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[36]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[37]  Z. Popovic,et al.  Terrain-adaptive bipedal locomotion control , 2010, ACM Trans. Graph..

[38]  John Dingliana,et al.  Spacetime vertex constraints for dynamically-based adaptation of motion-captured animation , 2011, SCA '11.

[39]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, ACM Trans. Graph..

[40]  Greg Turk,et al.  Keyframe control of complex particle systems using the adjoint method , 2006, SCA '06.

[41]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[42]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, SIGGRAPH 2010.

[43]  Jernej Barbic,et al.  Deformable object animation using reduced optimal control , 2009, ACM Trans. Graph..