3D computer vision based on machine learning with deep neural networks: A review

[1]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[2]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[3]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[4]  Rob Fergus,et al.  Depth Map Prediction from a Single Image using a Multi-Scale Deep Network , 2014, NIPS.

[5]  Jitendra Malik,et al.  Learning Category-Specific Deformable 3D Models for Object Reconstruction , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[7]  Thomas A. Funkhouser,et al.  Dilated Residual Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[9]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[10]  David A. Leopold,et al.  Blindsight depends on the lateral geniculate nucleus , 2010, Nature.

[11]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[12]  Jitendra Malik,et al.  Shape, Illumination, and Reflectance from Shading , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Jitendra Malik,et al.  Learning Rich Features from RGB-D Images for Object Detection and Segmentation , 2014, ECCV.

[16]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[17]  Jitendra Malik,et al.  Simultaneous Detection and Segmentation , 2014, ECCV.

[18]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[20]  Stefan Leutenegger,et al.  SceneNet RGB-D: 5M Photorealistic Images of Synthetic Indoor Trajectories with Ground Truth , 2016, ArXiv.

[21]  Jitendra Malik,et al.  Hypercolumns for object segmentation and fine-grained localization , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[23]  Yiannis Kompatsiaris,et al.  Deep Learning Advances in Computer Vision with 3D Data , 2017, ACM Comput. Surv..

[24]  Jiajun Wu,et al.  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling , 2016, NIPS.

[25]  Anders Grunnet-Jepsen,et al.  Intel(R) RealSense(TM) Stereoscopic Depth Cameras , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[26]  Joshua B. Tenenbaum,et al.  Deep Convolutional Inverse Graphics Network , 2015, NIPS.

[27]  Anders Grunnet-Jepsen,et al.  Intel RealSense Stereoscopic Depth Cameras , 2017, CVPR 2017.

[28]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[29]  Achintya K. Bhowmik Interactive and immersive devices with perceptual computing technologies , 2017 .

[30]  Dhanraj Vishwanath,et al.  Toward a new theory of stereopsis. , 2014, Psychological review.

[31]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[32]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.

[33]  Thomas A. Funkhouser,et al.  Semantic Scene Completion from a Single Depth Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Jitendra Malik,et al.  Hierarchical Surface Prediction for 3D Object Reconstruction , 2017, 2017 International Conference on 3D Vision (3DV).

[35]  Keechul Jung,et al.  GPU implementation of neural networks , 2004, Pattern Recognit..

[36]  Yann LeCun,et al.  Indoor Semantic Segmentation using depth information , 2013, ICLR.

[37]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[38]  Jianxiong Xiao,et al.  Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[41]  Ohad Shamir,et al.  The Power of Depth for Feedforward Neural Networks , 2015, COLT.

[42]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[43]  Miguel A. Nacenta,et al.  Depth perception with gaze-contingent depth of field , 2014, CHI.

[44]  Jianxiong Xiao,et al.  SUN RGB-D: A RGB-D scene understanding benchmark suite , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Alexei A. Efros,et al.  Multi-view Supervision for Single-View Reconstruction via Differentiable Ray Consistency , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Jürgen Schmidhuber,et al.  Learning to forget: continual prediction with LSTM , 1999 .

[47]  Paul Sajda,et al.  Machine learning for detection and diagnosis of disease. , 2006, Annual review of biomedical engineering.

[48]  Robert J. Wood,et al.  Science, technology and the future of small autonomous drones , 2015, Nature.

[49]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[50]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[51]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[52]  Robert F Murphy,et al.  An active role for machine learning in drug development. , 2011, Nature chemical biology.

[53]  Achintya K. Bhowmik Interactive displays : natural human-interface technologies , 2014 .

[54]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[55]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[57]  Silvio Savarese,et al.  3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction , 2016, ECCV.