Photo-realistic Neural Domain Randomization

[1]  Jonathan T. Barron,et al.  Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition , 2021, NeurIPS.

[2]  M. Stamminger,et al.  ADOP , 2021, ACM Trans. Graph..

[3]  Shalini De Mello,et al.  for Self-Supervised Object Detection via Generative Image Synthesis , 2021 .

[4]  Zhenhua Guo,et al.  Adversarial Unsupervised Domain Adaptation with Conditional and Label Shift: Infer, Align and Iterate , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[5]  J.-Y. Zhu,et al.  Advances in Neural Rendering , 2021, SIGGRAPH Courses.

[6]  Vladlen Koltun,et al.  Enhancing Photorealism Enhancement , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Rares Ambrus,et al.  Geometric Unsupervised Domain Adaptation for Semantic Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  B. Leibe,et al.  From Points to Multi-Object 3D Reconstruction , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Jonathan T. Barron,et al.  NeRD: Neural Reflectance Decomposition from Image Collections , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[10]  Jonathan T. Barron,et al.  NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Stan Birchfield,et al.  Self-Supervised Real-to-Sim Scene Generation , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[12]  Andreas Geiger,et al.  GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Edward Johns,et al.  Benchmarking Domain Randomisation for Visual Sim-to-Real Transfer , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Sanja Fidler,et al.  Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data Generation , 2020, ECCV.

[15]  Mathieu Aubry,et al.  CosyPose: Consistent multi-view multi-object 6D pose estimation , 2020, ECCV.

[16]  Alexei A. Efros,et al.  Contrastive Learning for Unpaired Image-to-Image Translation , 2020, ECCV.

[17]  Gordon Wetzstein,et al.  Implicit Neural Representations with Periodic Activation Functions , 2020, NeurIPS.

[18]  Jiri Matas,et al.  EPOS: Estimating 6D Pose of Objects With Symmetries , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[20]  Zhedong Zheng,et al.  Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation , 2020, International Journal of Computer Vision.

[21]  Xiangyang Ji,et al.  CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[22]  Stefan Hinterstoißer,et al.  An Annotation Saved is an Annotation Earned: Using Fully Synthetic Training for Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[23]  Xiaofeng Liu,et al.  Confidence Regularized Self-Training , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[24]  Timothy Patten,et al.  Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  Il Hong Suh,et al.  From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation , 2019, ArXiv.

[26]  Victor Lempitsky,et al.  Neural Point-Based Graphics , 2019, ECCV.

[27]  Adrien Gaidon,et al.  3D Packing for Self-Supervised Monocular Depth Estimation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Justus Thies,et al.  Deferred neural rendering , 2019, ACM Trans. Graph..

[29]  Sanja Fidler,et al.  Meta-Sim: Learning to Generate Synthetic Datasets , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[30]  Xingyi Zhou,et al.  Objects as Points , 2019, ArXiv.

[31]  Slobodan Ilic,et al.  HomebrewedDB: RGB-D Dataset for 6D Pose Estimation of 3D Objects , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[32]  Slobodan Ilic,et al.  DeceptionNet: Network-Driven Domain Randomization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[33]  Slobodan Ilic,et al.  DPOD: 6D Pose Object Detector and Refiner , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[34]  Vibhav Vineet,et al.  Photorealistic Image Synthesis for Object Instance Detection , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[35]  Leonidas J. Guibas,et al.  Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Hujun Bao,et al.  PVNet: Pixel-Wise Voting Network for 6DoF Pose Estimation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Stanley T. Birchfield,et al.  Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[38]  Slobodan Ilic,et al.  Seeing Beyond Appearance - Mapping Real Images into Geometrical Domains for Unsupervised CAD-based Recognition , 2018, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[39]  Siva Karthik Mustikovela,et al.  Geometric Image Synthesis , 2018, ACCV.

[40]  Nassir Navab,et al.  Deep Model-Based 6D Pose Refinement in RGB , 2018, ECCV.

[41]  Slobodan Ilic,et al.  Keep it Unreal: Bridging the Realism Gap for 2.5D Recognition with Geometry Priors Only , 2018, 2018 International Conference on 3D Vision (3DV).

[42]  Varun Jampani,et al.  Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[43]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Eric Brachmann,et al.  iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects , 2017, ACCV.

[45]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[46]  Silvio Savarese,et al.  Adversarial Feature Augmentation for Unsupervised Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[47]  Jiajun Wu,et al.  Self-Supervised Intrinsic Image Decomposition , 2017, NIPS.

[48]  Vincent Lepetit,et al.  On Pre-Trained Image Features and Synthetic Images for Deep Learning , 2017, ECCV Workshops.

[49]  Nassir Navab,et al.  SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[50]  Hang Zhang,et al.  Multi-style Generative Network for Real-time Transfer , 2017, ECCV Workshops.

[51]  P. Abbeel,et al.  Domain randomization for transferring deep neural networks from simulation to the real world , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[52]  G. Csurka Domain Adaptation for Visual Applications: A Comprehensive Survey , 2017, ArXiv.

[53]  Dumitru Erhan,et al.  Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Hans-Peter Seidel,et al.  Deep Shading: Convolutional Neural Networks for Screen Space Shading , 2016, Comput. Graph. Forum.

[56]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[58]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[59]  Rob Fergus,et al.  Depth Map Prediction from a Single Image using a Multi-Scale Deep Network , 2014, NIPS.

[60]  Vincent Lepetit,et al.  Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes , 2012, ACCV.

[61]  K. Torrance,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[62]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[63]  Long Quan,et al.  Linear N-Point Camera Pose Determination , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Shree K. Nayar,et al.  Generalization of Lambert's reflectance model , 1994, SIGGRAPH.

[65]  Neil Hunt,et al.  The triangle processor and normal vector shader: a VLSI system for high performance graphics , 1988, SIGGRAPH.

[66]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[67]  Frédo Durand,et al.  Single-Shot Scene Reconstruction , 2021, CoRL.

[68]  Naty Hoffman,et al.  Physically-Based Shading Models in Film and Game Production , 2010 .

[69]  Naty Hoffman Crafting Physically Motivated Shading Models for Game Development , 2010 .

[70]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[71]  J. Lambert Photometria sive de mensvra et gradibvs lvminis, colorvm et vmbrae , 1970 .