Interactive animation of dynamic manipulation

Lifelike animation of object manipulation requires dynamic interaction between animated characters, objects, and their environment. These interactions can be animated automatically with physically based simulations but proper controls are needed to animate characters that move realistically and that accomplish tasks in spite of unexpected disturbances. This paper describes an efficient control algorithm that generates realistic animations by incorporating motion data into task execution. The end result is a versatile system for interactive animation of dynamic manipulation tasks such as lifting, catching, and throwing.

[1]  Peter-Pike J. Sloan,et al.  Artist‐Directed Inverse‐Kinematics Using Radial Basis Function Interpolation , 2001, Comput. Graph. Forum.

[2]  Norman I. Badler,et al.  Animating human locomotion with inverse dynamics , 1996, IEEE Computer Graphics and Applications.

[3]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[4]  Eugene Fiume,et al.  Reusable motion synthesis using state-space controllers , 1990, SIGGRAPH.

[5]  Michael Gleicher,et al.  Motion editing with spacetime constraints , 1997, SI3D.

[6]  Michael Gleicher,et al.  Automated extraction and parameterization of motions in large data sets , 2004, SIGGRAPH 2004.

[7]  David E. Orin,et al.  Robot dynamics: equations and algorithms , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Kwang-Jin Choi,et al.  Online motion retargetting , 2000, Comput. Animat. Virtual Worlds.

[9]  Lucas Kovar,et al.  Automated extraction and parameterization of motions in large data sets , 2004, ACM Trans. Graph..

[10]  Jessica K. Hodgins,et al.  Motion capture-driven simulations that hit and react , 2002, SCA '02.

[11]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[12]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[13]  Jean-Claude Latombe,et al.  Planning motions with intentions , 1994, SIGGRAPH.

[14]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[15]  Dinesh K. Pai,et al.  Motion perturbation based on simple neuromotor control models , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[16]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH '08.

[17]  Vincent De Sapio,et al.  Human-Like Motion from Physiologically-Based Potential Energies , 2004 .

[18]  Kwang-Jin Choi,et al.  Online motion retargetting , 2000, Comput. Animat. Virtual Worlds.

[19]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[20]  Oussama Khatib,et al.  Whole-Body Dynamic Behavior and Control of Human-like Robots , 2004, Int. J. Humanoid Robotics.

[21]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.

[22]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[23]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[24]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[25]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[26]  Jovan Popovic,et al.  Adaptation of performed ballistic motion , 2005, TOGS.

[27]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[28]  Oussama Khatib,et al.  Simulating the task-level control of human motion: a methodology and framework for implementation , 2005, The Visual Computer.

[29]  Anthony A. Maciejewski,et al.  Dealing with the ill-conditioned equations of motion for articulated figures , 1990, IEEE Computer Graphics and Applications.

[30]  Katsu Yamane,et al.  Synthesizing animations of human manipulation tasks , 2004, ACM Trans. Graph..

[31]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[32]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[33]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[34]  Katsu Yamane,et al.  Synthesizing animations of human manipulation tasks , 2004, SIGGRAPH 2004.

[35]  Oussama Khatib,et al.  Operational Space Control of Multibody Systems with Explicit Holonomic Constraints , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[36]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[37]  Tomohiko Mukai,et al.  Geostatistical motion interpolation , 2005, SIGGRAPH 2005.

[38]  Demetri Terzopoulos,et al.  Automated learning of muscle-actuated locomotion through control abstraction , 1995, SIGGRAPH.

[39]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[40]  VranesicZvonko,et al.  Reusable motion synthesis using state-space controllers , 1990 .

[41]  Tomohiko Mukai,et al.  Geostatistical motion interpolation , 2005, SIGGRAPH '05.

[42]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[43]  Norman I. Badler,et al.  Strength guided motion , 1990, SIGGRAPH.

[44]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[45]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, SIGGRAPH 2004.