Striatal Activity Underlies Novelty-Based Choice in Humans

[1]  Robert N. Hughes,et al.  Neotic preferences in laboratory rodents: Issues, assessment and substrates , 2007, Neuroscience & Biobehavioral Reviews.

[2]  Raymond J. Dolan,et al.  Anticipation of novelty recruits reward system and hippocampus while promoting recollection , 2007, NeuroImage.

[3]  J. Gläscher,et al.  Gene–gene interaction associated with neural reward sensitivity , 2007, Proceedings of the National Academy of Sciences.

[4]  M. Delgado,et al.  Reward‐Related Responses in the Human Striatum , 2007, Annals of the New York Academy of Sciences.

[5]  Samuel M. McClure,et al.  Policy Adjustment in a Dynamic Economic Game , 2006, PloS one.

[6]  J. Gläscher,et al.  Dissociable Systems for Gain- and Loss-Related Value Predictions and Errors of Prediction in the Human Brain , 2006, The Journal of Neuroscience.

[7]  R. Dolan,et al.  Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans , 2006, Nature.

[8]  N. Bunzeck,et al.  Absolute Coding of Stimulus Novelty in the Human Substantia Nigra/VTA , 2006, Neuron.

[9]  E. Vaadia,et al.  Midbrain dopamine neurons encode decisions for future action , 2006, Nature Neuroscience.

[10]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.

[11]  R. Poldrack,et al.  Ventral–striatal/nucleus–accumbens sensitivity to prediction errors during classification learning , 2006, Human brain mapping.

[12]  Jonathan D. Cohen,et al.  Neuroeconomics: cross-currents in research on decision-making , 2006, Trends in Cognitive Sciences.

[13]  J. O'Doherty,et al.  Human Neural Learning Depends on Reward Prediction Errors in the Blocking Paradigm , 2005, Journal of Neurophysiology.

[14]  Giuseppe Anastasi,et al.  In vivo basal ganglia volumetry through application of NURBS models to MR images , 2006, Neuroradiology.

[15]  K. Doya,et al.  Representation of Action-Specific Reward Values in the Striatum , 2005, Science.

[16]  Jeffrey C. Cooper,et al.  Functional magnetic resonance imaging of reward prediction , 2005, Current opinion in neurology.

[17]  N. Hiroi,et al.  Genetic susceptibility to substance dependence , 2005, Molecular Psychiatry.

[18]  H. Heinze,et al.  Reward-Related fMRI Activation of Dopaminergic Midbrain Is Associated with Enhanced Hippocampus- Dependent Long-Term Memory Formation , 2005, Neuron.

[19]  J. Gläscher,et al.  Pathological gambling is linked to reduced activation of the mesolimbic reward system , 2005, Nature Neuroscience.

[20]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[21]  Robert M. Roth,et al.  The neural circuitry of reward and its relevance to psychiatric disorders , 2004, Current psychiatry reports.

[22]  Saori C. Tanaka,et al.  Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops , 2004, Nature Neuroscience.

[23]  M. Gluck,et al.  Human midbrain sensitivity to cognitive feedback and uncertainty during classification learning. , 2004, Journal of neurophysiology.

[24]  Mircea Ariel Schoenfeld,et al.  Differentiation of idiopathic Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging , 2004, NeuroImage.

[25]  Samuel M. McClure,et al.  Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum , 2003, Neuron.

[26]  Karl J. Friston,et al.  Temporal Difference Models and Reward-Related Learning in the Human Brain , 2003, Neuron.

[27]  J. Steenkamp,et al.  Consumer and Market Drivers of the Trial Probability of New Consumer Packaged Goods , 2003 .

[28]  M. Spinella,et al.  EVOLUTIONARY MISMATCH, NEURAL REWARD CIRCUITS, AND PATHOLOGICAL GAMBLING , 2003, The International journal of neuroscience.

[29]  P. Dayan,et al.  Reward, Motivation, and Reinforcement Learning , 2002, Neuron.

[30]  Peter Dayan,et al.  Dopamine: generalization and bonuses , 2002, Neural Networks.

[31]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[32]  Robert Turner,et al.  Image Distortion Correction in fMRI: A Quantitative Evaluation , 2002, NeuroImage.

[33]  P. Montague,et al.  Activity in human ventral striatum locked to errors of reward prediction , 2002, Nature Neuroscience.

[34]  Ronen I. Brafman,et al.  R-MAX - A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning , 2001, J. Mach. Learn. Res..

[35]  R. Turner,et al.  Combined correction for geometric distortion and its interaction with head movement in fMRI , 2002 .

[36]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[37]  Samuel M. McClure,et al.  Predictability Modulates Human Brain Response to Reward , 2001, The Journal of Neuroscience.

[38]  Brian Knutson,et al.  FMRI Visualization of Brain Activity during a Monetary Incentive Delay Task , 2000, NeuroImage.

[39]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[40]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[41]  Andrew Y. Ng,et al.  Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping , 1999, ICML.

[42]  Phillip J. Holcomb,et al.  Regulation of attention to novel stimuli by frontal lobes: an event‐related potential study , 1998, Neuroreport.

[43]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[44]  J. Horvitz,et al.  Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat , 1997, Brain Research.

[45]  A. Ennaceur,et al.  A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory , 1992, Behavioural Brain Research.

[46]  Dragan M. Svrakic,et al.  The Tridimensional Personality Questionnaire: U.S. Normative Data , 1991, Psychological reports.

[47]  L. Kaelbling Learning in embedded systems , 1993 .

[48]  J. Delacour,et al.  A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data , 1988, Behavioural Brain Research.

[49]  J. Gani,et al.  Progress in statistics , 1975 .