Mechanisms of Orientation Selectivity in the Primary Visual Cortex.

The mechanisms underlying the emergence of orientation selectivity in the visual cortex have been, and continue to be, the subjects of intense scrutiny. Orientation selectivity reflects a dramatic change in the representation of the visual world: Whereas afferent thalamic neurons are generally orientation insensitive, neurons in the primary visual cortex (V1) are extremely sensitive to stimulus orientation. This profound change in the receptive field structure along the visual pathway has positioned V1 as a model system for studying the circuitry that underlies neural computations across the neocortex. The neocortex is characterized anatomically by the relative uniformity of its circuitry despite its role in processing distinct signals from region to region. A combination of physiological, anatomical, and theoretical studies has shed some light on the circuitry components necessary for generating orientation selectivity in V1. This targeted effort has led to critical insights, as well as controversies, concerning how neural circuits in the neocortex perform computations.

[1]  D. Whitteridge,et al.  Physiological and morphological properties of identified basket cells in the cat's visual cortex , 2004, Experimental Brain Research.

[2]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[4]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[5]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[6]  Trichur Raman Vidyasagar,et al.  Multiple mechanisms underlying the orientation selectivity of visual cortical neurones , 1996, Trends in Neurosciences.

[7]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[8]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[9]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  Henry J. Alitto,et al.  Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. , 2004, Journal of neurophysiology.

[11]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[12]  D. Hubel Tungsten Microelectrode for Recording from Single Units. , 1957, Science.

[13]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[14]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[15]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[16]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[17]  M. Carandini,et al.  Stimulus contrast modulates functional connectivity in visual cortex , 2009, Nature Neuroscience.

[18]  K. Miller,et al.  Different Roles for Simple-Cell and Complex-Cell Inhibition in V1 , 2003, The Journal of Neuroscience.

[19]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[20]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[21]  W. Levick,et al.  Orientation bias of cat retinal ganglion cells , 1980, Nature.

[22]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[23]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Carandini,et al.  A Synaptic Explanation of Suppression in Visual Cortex , 2002, The Journal of Neuroscience.

[25]  M. Scanziani,et al.  Tuned Thalamic Excitation is Amplified by Visual Cortical Circuits , 2013, Nature Neuroscience.

[26]  Hui Chen,et al.  Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[27]  D. Hansel,et al.  The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map , 2012, The Journal of Neuroscience.

[28]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[29]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[30]  Michael I. Jordan,et al.  A R-P learning applied to a network model of cortical area 7a , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[31]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[32]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[33]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[34]  P. Hammond Cat retinal ganglion cells: size and shape of receptive field centres , 1974, The Journal of physiology.

[35]  Trichur Raman Vidyasagar,et al.  Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings in vivo , 1993, Visual Neuroscience.

[36]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[37]  Daniel B. Rubin,et al.  The Stabilized Supralinear Network: A Unifying Circuit Motif Underlying Multi-Input Integration in Sensory Cortex , 2015, Neuron.

[38]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[39]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[40]  R. Reid,et al.  Specificity and randomness in the visual cortex , 2007, Current Opinion in Neurobiology.

[41]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[42]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[43]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[44]  D. Ferster,et al.  Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex , 2001, Neuron.

[45]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[46]  J. Movshon,et al.  Dynamics of Suppression in Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[47]  Nicholas J. Priebe,et al.  Mechanisms underlying cross-orientation suppression in cat visual cortex , 2006, Nature Neuroscience.

[48]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[49]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[50]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[51]  Na Ji,et al.  Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs , 2015, Nature Neuroscience.

[52]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[53]  C. Gray,et al.  Physiological properties of inhibitory interneurons in cat striate cortex. , 1997, Cerebral cortex.

[54]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[55]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[56]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[57]  Kenichi Ohki,et al.  Laminar differences in the orientation selectivity of geniculate afferents in mouse primary visual cortex , 2015, Nature Neuroscience.

[58]  M. Carandini,et al.  Neuronal Selectivity and Local Map Structure in Visual Cortex , 2008, Neuron.

[59]  M. DeWeese,et al.  Shared and private variability in the auditory cortex. , 2004, Journal of neurophysiology.

[60]  Mriganka Sur,et al.  Synaptic Integration by V1 Neurons Depends on Location within the Orientation Map , 2002, Neuron.

[61]  田中 啓治 Organization of Geniculate Inputs to Visual Cortical Cells in the Cat , 1986 .

[62]  Ian Nauhaus,et al.  Anterior-Posterior Direction Opponency in the Superficial Mouse Lateral Geniculate Nucleus , 2012, Neuron.

[63]  A. Grinvald,et al.  Spontaneously emerging cortical representations of visual attributes , 2003, Nature.

[64]  Nicholas J. Priebe,et al.  Strabismus Disrupts Binocular Synaptic Integration in Primary Visual Cortex , 2013, The Journal of Neuroscience.

[65]  A. Grinvald,et al.  Imaging Cortical Dynamics at High Spatial and Temporal Resolution with Novel Blue Voltage-Sensitive Dyes , 1999, Neuron.

[66]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[67]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[68]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[70]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[71]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[72]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[73]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[74]  Nicholas J. Priebe,et al.  The Relationship between Subthreshold and Suprathreshold Ocular Dominance in Cat Primary Visual Cortex , 2008, The Journal of Neuroscience.

[75]  Nicholas J. Priebe,et al.  Local Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons , 2015, Neuron.

[76]  L. Nowak,et al.  Impact of Cortical Network Activity on , 2006 .

[77]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  Maria V. Sanchez-Vives,et al.  Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. , 2008, Cerebral cortex.

[79]  Edward M. Callaway,et al.  A dedicated circuit linking direction selective retinal ganglion cells to primary visual cortex , 2014, Nature.

[80]  Yuzhi Chen,et al.  Sensory stimulation shifts visual cortex from synchronous to asynchronous states , 2014, Nature.

[81]  Y. Frégnac,et al.  A cellular analogue of visual cortical plasticity , 1988, Nature.

[82]  Yves Frégnac,et al.  Cortical Correlates of Low-Level Perception: From Neural Circuits to Percepts , 2015, Neuron.

[83]  Maria V. Sanchez-Vives,et al.  Spatial and temporal features of synaptic to discharge receptive field transformation in cat area 17. , 2010, Journal of neurophysiology.

[84]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[85]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[86]  Klaus Obermayer,et al.  The operating regime of local computations in primary visual cortex. , 2009, Cerebral cortex.

[87]  U. Eysel,et al.  GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex , 2004, Experimental Brain Research.

[88]  Nicholas J. Priebe,et al.  Emergence of Orientation Selectivity in the Mammalian Visual Pathway , 2013, The Journal of Neuroscience.

[89]  D Fitzpatrick,et al.  Cortical imaging: Capturing the moment , 2000, Current Biology.

[90]  K. Miller,et al.  LGN input to simple cells and contrast-invariant orientation tuning: an analysis. , 2002, Journal of neurophysiology.

[91]  田中 啓治,et al.  Cross-correlation analysis of geniculostriate neuronal relationships in cats , 1983 .

[92]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[93]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  R. Freeman,et al.  Origins of cross-orientation suppression in the visual cortex. , 2006, Journal of neurophysiology.

[95]  Philip H Smith,et al.  Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices , 2001, The Journal of comparative neurology.

[96]  Trichur R. Vidyasagar,et al.  Origins of feature selectivities and maps in the mammalian primary visual cortex , 2015, Trends in Neurosciences.

[97]  Tomaso Poggio,et al.  Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex. , 2004, Journal of neurophysiology.

[98]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[99]  Trichur Raman Vidyasagar,et al.  Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  Shimon Ullman,et al.  Recognition invariance obtained by extended and invariant features , 2004, Neural Networks.

[101]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[102]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[103]  Maria V. Sanchez-Vives,et al.  Impact of cortical network activity on short-term synaptic depression. , 2006, Cerebral cortex.

[104]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[105]  Haim Sompolinsky,et al.  Patterns of Ongoing Activity and the Functional Architecture of the Primary Visual Cortex , 2004, Neuron.

[106]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[107]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[108]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[109]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[110]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[111]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[112]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[113]  A. Leventhal,et al.  Direction biases of X and Y type retinal ganglion cells in the cat. , 1995, Journal of neurophysiology.

[114]  Trichur Raman Vidyasagar,et al.  A linear model fails to predict orientation selectivity of cells in the cat visual cortex. , 1996, The Journal of physiology.

[115]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[116]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[117]  Nicholas J. Priebe,et al.  Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex , 2005, The Journal of Neuroscience.

[118]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[119]  R. Douglas,et al.  An intracellular study of the contrast-dependence of neuronal activity in cat visual cortex. , 1997, Cerebral cortex.

[120]  A. Leventhal,et al.  Structural basis of orientation sensitivity of cat retinal ganglion cells , 1983, The Journal of comparative neurology.

[121]  K. Miller,et al.  Balanced Amplification: A New Mechanism of Selective Amplification of Neural Activity Patterns , 2016, Neuron.

[122]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[123]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[124]  R. M. Shapley,et al.  Edge detectors in human vision , 1973, The Journal of physiology.

[125]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[126]  M. C. Morrone,et al.  Cross-orientation inhibition in cat is GABA mediated , 2004, Experimental Brain Research.

[127]  Michael I. Jordan,et al.  A more biologically plausible learning rule than backpropagation applied to a network model of cortical area 7a. , 1991, Cerebral cortex.

[128]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[129]  M. Salas,et al.  Effect of estrogen on the responsivity of hypothalamic and mesencephalic neurons in the female cat. , 1969, Brain research.

[130]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[131]  D. Ferster,et al.  Feedforward Origins of Response Variability Underlying Contrast Invariant Orientation Tuning in Cat Visual Cortex , 2012, Neuron.

[132]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[133]  W. Levick,et al.  Properties of rarely encountered types of ganglion cells in the cat's retina and on overall classification , 1974, The Journal of physiology.

[134]  Mriganka Sur,et al.  Local networks in visual cortex and their influence on neuronal responses and dynamics , 2004, Journal of Physiology-Paris.

[135]  I. Ohzawa,et al.  Binocular cross-orientation suppression in the cat's striate cortex. , 1998, Journal of neurophysiology.

[136]  Y. Dan,et al.  Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking , 2006, Neuron.

[137]  Nicholas J. Priebe,et al.  The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex , 2007, Neuron.