Guidance law with circular no-fly zone constraint

The proposed guidance law is used for guiding a missile against a maneuvering target while satisfying a circular no-fly zone (NFZ) constraint. It consists of two parts: virtual-target guidance (VTG) and boundary-constraint handling scheme (BCHS). In order that the missile avoids the NFZ, VTG first maps the actual target to a virtual one, then obtains the relative motion between the virtual target and missile, and finally uses proportional navigation to steer the missile to the virtual target. The missile also hits the actual target when it hits the virtual target because the virtual and actual targets are coincident at this moment. In some cases, especially when the initial velocity vector of the missile points toward the center of the NFZ, if the evasive action taken by VTG is found to be insufficient, then BCHS will be enabled to keep the missile from entering the NFZ unless the target enters the NFZ.

[1]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[2]  R. G. Cottrell Optimal intercept guidance for short-range tactical missiles , 1971 .

[3]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[4]  Richard G. Cobb,et al.  Three-Dimensional Trajectory Optimization Satisfying Waypoint and No-Fly Zone Constraints , 2009 .

[5]  Yiyuan Zhao,et al.  Trajectory Planning for Autonomous Aerospace Vehicles amid Known Obstacles and Conflicts , 2004 .

[6]  Moharam Habibnejad Korayem,et al.  Optimal motion planning of non-linear dynamic systems in the presence of obstacles and moving boundaries using SDRE: application on cable-suspended robot , 2014 .

[7]  Ernest J. Ohlmeyer,et al.  Generalized Vector Explicit Guidance , 2006 .

[8]  Raffaello D'Andrea,et al.  Path Planning for Unmanned Aerial Vehicles in Uncertain and Adversarial Environments , 2003 .

[9]  Emilio Frazzoli,et al.  Real-Time Motion Planning for Agile Autonomous Vehicles , 2000 .

[10]  W. Rudin Principles of mathematical analysis , 1964 .

[11]  V. Garber Optimum intercept laws for accelerating targets. , 1968 .

[12]  Narendra Ahuja,et al.  A potential field approach to path planning , 1992, IEEE Trans. Robotics Autom..

[13]  S. M. Malaek,et al.  Dynamic based cost functions for TF/TA flights , 2012, 2005 IEEE Aerospace Conference.

[14]  Paul Zarchan,et al.  Tactical and strategic missile guidance , 1990 .

[15]  G. Cherry,et al.  A general, explicit, optimizing guidance law for rocket-propelled spaceflight , 1964 .

[16]  Min-Jea Tahk,et al.  Time-to-go weighted optimal guidance with impact angle constraints , 2006, IEEE Transactions on Control Systems Technology.

[17]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[18]  V. H. L. Cheng,et al.  OPTIMAL TRAJECTORY SYNTHESIS FOR TERRAIN-FOLLOWING FLIGHT , 1991 .

[19]  L. Blasi,et al.  Smooth Flight Trajectory Planning in the Presence of No-Fly Zones and Obstacles , 2010 .

[20]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[21]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[22]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[23]  M. Kim,et al.  Terminal Guidance for Impact Attitude Angle Constrained Flight Trajectories , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[25]  Ignacy Duleba,et al.  Nonholonomic motion planning based on Newton algorithm with energy optimization , 2003, IEEE Trans. Control. Syst. Technol..

[26]  Zengqiang Chen,et al.  Finite-time convergent guidance law with impact angle constraint based on sliding-mode control , 2012 .

[27]  Joseph Z. Ben-Asher,et al.  Advances in Missile Guidance Theory , 1998 .

[28]  F. Adler Missile Guidance by Three‐Dimensional Proportional Navigation , 1956 .

[29]  Haitao Gao,et al.  Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method , 2013 .

[30]  Luke Chia‐Liu Yuan,et al.  Homing and Navigational Courses of Automatic Target‐Seeking Devices , 1948 .

[31]  R. Bellman The theory of dynamic programming , 1954 .