Momentum-Mapped Inverted Pendulum Models for Controlling Dynamic Human Motions

Designing a unified framework for simulating a broad variety of human behaviors has proven to be challenging. In this article, we present an approach for control system design that can generate animations of a diverse set of behaviors including walking, running, and a variety of gymnastic behaviors. We achieve this generalization with a balancing strategy that relies on a new form of inverted pendulum model (IPM), which we call the momentum-mapped IPM (MMIPM). We analyze reference motion capture data in a pre-processing step to extract the motion of the MMIPM. To compute a new motion, the controller plans a desired motion, frame by frame, based on the current pendulum state and a predicted pendulum trajectory. By tracking this time-varying trajectory, the controller creates a character that dynamically balances, changes speed, makes turns, jumps, and performs gymnastic maneuvers.

[1]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[2]  Taesoo Kwon,et al.  Locomotion control for many-muscle humanoids , 2014, ACM Trans. Graph..

[3]  Sung-Hee Lee,et al.  A momentum-based balance controller for humanoid robots on non-level and non-stationary ground , 2012, Auton. Robots.

[4]  Victor B. Zordan,et al.  Control of rotational dynamics for ground behaviors , 2013, SCA '13.

[5]  Ruth F. Curtain,et al.  Linear-quadratic control: An introduction , 1997, Autom..

[6]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[7]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[8]  Lucas Kovar,et al.  Footskate cleanup for motion capture editing , 2002, SCA '02.

[9]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[10]  Marko B. Popovic,et al.  Angular momentum regulation during human walking: biomechanics and control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[11]  Eugene Fiume,et al.  Feedback control for rotational movements in feature space , 2014, Comput. Graph. Forum.

[12]  C. K. Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[13]  Philippe Beaudoin,et al.  Continuation methods for adapting simulated skills , 2008, ACM Trans. Graph..

[14]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[15]  Victor B. Zordan,et al.  Control of Rotational Dynamics for Ground and Aerial Behavior , 2014, IEEE Transactions on Visualization and Computer Graphics.

[16]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[17]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[18]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[19]  Sergey Levine,et al.  Physically plausible simulation for character animation , 2012, SCA '12.

[20]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..

[21]  Philippe Beaudoin,et al.  Robust task-based control policies for physics-based characters , 2009, ACM Trans. Graph..

[22]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[23]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[24]  Teruyoshi Sadahiro,et al.  Motion control for robust landing of acrobat robot (SMB) , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[25]  Michael Gleicher,et al.  Parametric motion graphs , 2007, SI3D.

[26]  Aaron Hertzmann,et al.  Feature-based locomotion controllers , 2010, SIGGRAPH 2010.

[27]  Victor B. Zordan,et al.  Goal-directed stepping with momentum control , 2010, SCA '10.

[28]  Yoonsang Lee,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[29]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[30]  Hyun Joon Shin,et al.  Fat graphs: constructing an interactive character with continuous controls , 2006, SCA '06.

[31]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, ACM Trans. Graph..

[32]  Martin de Lasa,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[33]  Kazuhito Yokoi,et al.  A hop towards running humanoid biped , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[34]  J. Cloutier State-dependent Riccati equation techniques: an overview , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[35]  Vladlen Koltun,et al.  Optimizing locomotion controllers using biologically-based actuators and objectives , 2012, ACM Trans. Graph..

[36]  Jessica K. Hodgins,et al.  Simulating balance recovery responses to trips based on biomechanical principles , 2009, SCA '09.

[37]  Tomomichi Sugihara,et al.  Simulated regulator to synthesize ZMP manipulation and foot location for autonomous control of biped robots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[38]  Nancy S. Pollard,et al.  To appear in the ACM SIGGRAPH conference proceedings Responsive Characters from Motion Fragments , 2022 .

[39]  Marc H. Raibert,et al.  Control Of A Biped Somersault In 3D , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Sung Yong Shin,et al.  Computer puppetry: An importance-based approach , 2001, TOGS.

[41]  Sehoon Ha,et al.  Falling and landing motion control for character animation , 2012, ACM Trans. Graph..

[42]  Libin Liu,et al.  Guided Learning of Control Graphs for Physics-Based Characters , 2016, ACM Trans. Graph..

[43]  Z. Popovic,et al.  Terrain-adaptive bipedal locomotion control , 2010, ACM Trans. Graph..

[44]  Ryosuke Tajima,et al.  Fast running experiments involving a humanoid robot , 2009, 2009 IEEE International Conference on Robotics and Automation.

[45]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[46]  M. V. D. Panne,et al.  Sampling-based contact-rich motion control , 2010, ACM Trans. Graph..

[47]  Martin de Lasa,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, ACM Trans. Graph..

[48]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[49]  Sung-Hee Lee,et al.  Reaction Mass Pendulum (RMP): An explicit model for centroidal angular momentum of humanoid robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[50]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[51]  Zoran Popovic,et al.  Composite control of physically simulated characters , 2011, TOGS.

[52]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[53]  Taesoo Kwon,et al.  Control systems for human running using an inverted pendulum model and a reference motion capture sequence , 2010, SCA '10.

[54]  Zoran Popovic,et al.  Motion fields for interactive character locomotion , 2010, CACM.

[55]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..