Grid-based localization and local mapping with moving object detection and tracking

We present a real-time algorithm for simultaneous localization and local mapping (local SLAM) with detection and tracking of moving objects (DATMO) in dynamic outdoor environments from a moving vehicle equipped with a laser scanner, short-range radars and odometry. To correct the vehicle odometry we introduce a new fast implementation of incremental scan matching method that can work reliably in dynamic outdoor environments. After obtaining a good vehicle localization, the map surrounding of the vehicle is updated incrementally and moving objects are detected without a priori knowledge of the targets. Detected moving objects are finally tracked by a Multiple Hypothesis Tracker (MHT) coupled with an adaptive Interacting Multiple Model (IMM) filter. The experimental results on datasets collected from different scenarios such as: urban streets, country roads and highways demonstrate the efficiency of the proposed algorithm.

[1]  Wolfram Burgard,et al.  Mobile robot mapping in populated environments , 2003, Adv. Robotics.

[2]  Gaurav S. Sukhatme,et al.  Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments , 2005, Auton. Robots.

[3]  K. G. Murty An Algorithm for Ranking All the Assignment in Order of Increasing Cost , 1968 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  William Whittaker,et al.  Autonomous driving in urban environments: Boss and the Urban Challenge , 2008, J. Field Robotics.

[6]  Christian Laugier,et al.  Adaptive Interacting Multiple Models applied on pedestrian tracking in car parks , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[8]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[9]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[10]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[11]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[12]  William Whittaker,et al.  Autonomous driving in urban environments: Boss and the Urban Challenge , 2008 .

[13]  Wolfram Burgard,et al.  Map building with mobile robots in dynamic environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[14]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[15]  C. Laurgeau,et al.  PUVAME - New French Approach for Vulnerable Road Users Safety , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[16]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[17]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[18]  Y. Bar-Shalom Tracking and data association , 1988 .

[19]  Samuel S. Blackman,et al.  Evaluation of IMM filtering for an air defense system application , 1995, Optics & Photonics.

[20]  Trung-Dung Vu,et al.  Online Localization and Mapping with Moving Object Tracking in Dynamic Outdoor Environments , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[21]  Paolo Fiorini,et al.  Navigating a Robotic Wheelchair in a Railway Station during Rush Hour , 1999, Int. J. Robotics Res..

[22]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[23]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Ingemar J. Cox,et al.  An efficient implementation and evaluation of Reid's multiple hypothesis tracking algorithm for visual tracking , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[25]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization, Mapping and Moving Object Tracking , 2007, Int. J. Robotics Res..

[26]  Alberto Elfes,et al.  Occupancy grids: a probabilistic framework for robot perception and navigation , 1989 .

[27]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[28]  Dirk Haehnel,et al.  Junior: The Stanford entry in the Urban Challenge , 2008 .

[29]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .

[31]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[32]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[33]  Hobart R. Everett,et al.  From Laboratory to Warehouse: Security Robots Meet the Real World , 1999, Int. J. Robotics Res..

[34]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[35]  Jr. G. Forney,et al.  Viterbi Algorithm , 1973, Encyclopedia of Machine Learning.

[36]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[37]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[38]  Christian Laugier,et al.  Pedestrian Tracking in Car Parks : An Adaptive Interacting Multiple Models Based Filtering Method , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[39]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[40]  Katta G. Murty,et al.  Letter to the Editor - An Algorithm for Ranking all the Assignments in Order of Increasing Cost , 1968, Oper. Res..

[41]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.