Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots

This paper presents a method of computing efficient and natural-looking motions for humanoid robots walking on varied terrain. It uses a small set of high-quality motion primitives (such as a fixed gait on flat ground) that have been generated offline. But rather than restrict motion to these primitives, it uses them to derive a sampling strategy for a probabilistic, sample-based planner. Results in simulation on several different terrains demonstrate a reduction in planning time and a marked increase in motion quality.

[1]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Jean-Paul Laumond,et al.  Finding Collision-Free Smooth Trajectories for a Non-Holonomic Mobile Robot , 1987, IJCAI.

[3]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[4]  Jian L. Zhou,et al.  User's Guide for CFSQP Version 2.0: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints , 1994 .

[5]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[6]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[7]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[8]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[9]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[10]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[11]  Michael Gleicher,et al.  Animation from observation: Motion capture and motion editing , 1999, COMG.

[12]  Jean-Claude Latombe,et al.  Autonomous agents for real-time animation , 1999 .

[13]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[14]  Shane Farritor,et al.  Action module planning and its application to an experimental climbing robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  Frank Chongwoo Park,et al.  Optimal robot motions for physical criteria , 2001, J. Field Robotics.

[16]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[17]  Sung Yong Shin,et al.  Computer puppetry: An importance-based approach , 2001, TOGS.

[18]  Emilio Frazzoli,et al.  Aggressive Maneuvering of Small Autonomous Helicopters: A Human-Centered Approach , 2001, Int. J. Robotics Res..

[19]  Thierry Siméon,et al.  A random loop generator for planning the motions of closed kinematic chains using PRM methods , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Mitul Saha,et al.  Exact Collision Checking of Robot Paths , 2002, WAFR.

[21]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[22]  S. Shankar Sastry,et al.  Autonomous Helicopter Flight via Reinforcement Learning , 2003, NIPS.

[23]  Kostas E. Bekris,et al.  Probabilistic Roadmaps of Trees for Parallel Computation of Multiple Query Roadmaps , 2003, ISRR.

[24]  Timothy Bretl,et al.  Toward Autonomous Free-Climbing Robots , 2005, ISRR.

[25]  Thierry Siméon,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Visual Simulation of Ice Crystal Growth , 2022 .

[26]  Masayuki Inaba,et al.  Motion Planning for Humanoid Robots , 2003, ISRR.

[27]  Katsu Yamane,et al.  Synthesizing animations of human manipulation tasks , 2004, ACM Trans. Graph..

[28]  Ben Tse,et al.  Autonomous Inverted Helicopter Flight via Reinforcement Learning , 2004, ISER.

[29]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[30]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[31]  Marko B. Popovic,et al.  Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications , 2005, Int. J. Robotics Res..

[32]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[33]  Steve C. Maddock,et al.  Adapting motion capture data using weighted real-time inverse kinematics , 2005, CIE.

[34]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[35]  Munther A. Dahleh,et al.  Maneuver-based motion planning for nonlinear systems with symmetries , 2005, IEEE Transactions on Robotics.

[36]  Timothy Bretl,et al.  Non-gaited humanoid locomotion planning , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[37]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, ACM Trans. Graph..

[38]  Taesoo Kwon,et al.  Motion modeling for on-line locomotion synthesis , 2005, SCA '05.

[39]  Nicholas Roy,et al.  Adapting probabilistic roadmaps to handle uncertain maps , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[40]  Timothy Bretl,et al.  Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem , 2006, Int. J. Robotics Res..

[41]  Jean-Claude Latombe,et al.  On the Probabilistic Foundations of Probabilistic Roadmap Planning , 2006, Int. J. Robotics Res..

[42]  Timothy Bretl,et al.  A fast and adaptive test of static equilibrium for legged robots , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[43]  Dieter Fox,et al.  Location-Based Activity Recognition , 2005, KI.

[44]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.