Interpreting and Predicting Tactile Signals via a Physics-Based and Data-Driven Framework

High-density afferents in the human hand have long been regarded as essential for human grasping and manipulation abilities. In contrast, robotic tactile sensors are typically used to provide low-density contact data, such as center-of-pressure and resultant force. Although useful, this data does not exploit the rich information content that some tactile sensors (e.g., the SynTouch BioTac) naturally provide. This research extends robotic tactile sensing beyond reduced-order models through 1) the automated creation of a precise tactile dataset for the BioTac over diverse physical interactions, 2) a 3D finite element (FE) model of the BioTac, which complements the experimental dataset with high-resolution, distributed contact data, and 3) neural-network-based mappings from raw BioTac signals to low-dimensional experimental data, and more importantly, high-density FE deformation fields. These data streams can provide a far greater quantity of interpretable information for grasping and manipulation algorithms than previously accessible.

[1]  Elliott Donlon,et al.  Dense Tactile Force Estimation using GelSlim and inverse FEM , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[2]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[3]  Gaurav S. Sukhatme,et al.  Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[4]  Wei Chen,et al.  Tactile Sensors for Friction Estimation and Incipient Slip Detection—Toward Dexterous Robotic Manipulation: A Review , 2018, IEEE Sensors Journal.

[5]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[6]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[7]  Veronica J. Santos,et al.  Biomimetic Tactile Sensor Array , 2008, Adv. Robotics.

[8]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[9]  Byron Boots,et al.  Robust Learning of Tactile Force Estimation through Robot Interaction , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[10]  Jeremy A. Marvel,et al.  Simplified framework for robot coordinate registration for manufacturing applications , 2016, 2016 IEEE International Symposium on Assembly and Manufacturing (ISAM).

[11]  Ravinder Dahiya,et al.  Robotic Tactile Perception of Object Properties: A Review , 2017, ArXiv.

[12]  Huei-Huang Lee,et al.  Finite element simulations with ANSYS workbench 16 , 2015 .

[13]  Ki-Suk Kim,et al.  Two-point discrimination values vary depending on test site, sex and test modality in the orofacial region: a preliminary study , 2017, Journal of applied oral science : revista FOB.

[14]  Jianwei Zhang,et al.  Simulation of the SynTouch BioTac Sensor , 2018, IAS.

[15]  Ravi Balasubramanian,et al.  The Human Hand as an Inspiration for Robot Hand Development , 2014, Springer Tracts in Advanced Robotics.

[16]  G.E. Loeb,et al.  Deformable skin design to enhance response of a biomimetic tactile sensor , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[17]  M. T. Mason,et al.  Toward Robotic Manipulation , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[18]  Danica Kragic,et al.  Trends and challenges in robot manipulation , 2019, Science.

[19]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[20]  Daniel Kappler,et al.  Riemannian Motion Policies , 2018, ArXiv.

[21]  Véronique Perdereau,et al.  Tactile sensing in dexterous robot hands - Review , 2015, Robotics Auton. Syst..

[22]  Edward H. Adelson,et al.  GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force , 2017, Sensors.

[23]  Jianhua Li,et al.  GelSlim: A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[24]  Gerald E. Loeb,et al.  Haptic feature extraction from a biomimetic tactile sensor: Force, contact location and curvature , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[25]  Chia-Hsien Lin,et al.  Signal processing and fabrication of a biomimetic tactile sensor array with thermal, force and microvibration modalities , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[26]  Tomonori Yamamoto,et al.  Use of tactile feedback to control exploratory movements to characterize object compliance , 2012, Front. Neurorobot..

[27]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[28]  Christopher G. Atkeson,et al.  Recent progress in tactile sensing and sensors for robotic manipulation: can we turn tactile sensing into vision?1 , 2019, Adv. Robotics.

[29]  Chia-Hsien Lin,et al.  Estimating Point of Contact , Force and Torque in a Biomimetic Tactile Sensor with Deformable Skin , 2013 .

[30]  P. Marcal,et al.  Introduction to the Finite-Element Method , 1973 .

[31]  Kaspar Althoefer,et al.  Tactile sensing for dexterous in-hand manipulation in robotics-A review , 2011 .

[32]  Jeremy A. Marvel,et al.  Strategies for Improving and Evaluating Robot Registration Performance , 2018, IEEE Transactions on Automation Science and Engineering.

[33]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[34]  Yanmei Li,et al.  A review of modeling of soft-contact fingers and stiffness control for dextrous manipulation in robotics , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[35]  Jonathan Rossiter,et al.  The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies , 2018, Soft robotics.