microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity

[1]  Miguel Pignatelli,et al.  Database: The Journal of Biological Databases and Curation , 2016 .

[2]  Mary Goldman,et al.  The UCSC Cancer Genomics Browser: update 2015 , 2014, Nucleic Acids Res..

[3]  K. Nephew,et al.  microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity , 2014, Molecular Cancer.

[4]  Wei Xu,et al.  Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway , 2014, Autophagy.

[5]  Jinli Wang,et al.  MicroRNA-155 Promotes Autophagy to Eliminate Intracellular Mycobacteria by Targeting Rheb , 2013, PLoS pathogens.

[6]  Jinglong Wang,et al.  Dual Inhibition of PI3K and mTOR Mitigates Compensatory AKT Activation and Improves Tamoxifen Response in Breast Cancer , 2013, Molecular Cancer Research.

[7]  Jing Zhao,et al.  17β-Estradiol up-regulates miR-155 expression and reduces TP53INP1 expression in MCF-7 breast cancer cells , 2013, Molecular and Cellular Biochemistry.

[8]  M. Weitzman,et al.  OncomiR Addiction Is Generated by a miR-155 Feedback Loop in Theileria-Transformed Leukocytes , 2013, PLoS pathogens.

[9]  Wilfried Gouraud,et al.  bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses , 2013, Database J. Biol. Databases Curation.

[10]  Mary Goldman,et al.  The UCSC Cancer Genomics Browser: update 2015 , 2014, Nucleic Acids Res..

[11]  E. Martin,et al.  Insulin-Like Growth Factor-1 Signaling Regulates miRNA Expression in MCF-7 Breast Cancer Cell Line , 2012, PloS one.

[12]  D. Jiao,et al.  miR-155 and miR-31 are differentially expressed in breast cancer patients and are correlated with the estrogen receptor and progesterone receptor status. , 2012, Oncology letters.

[13]  Chad J Creighton,et al.  The molecular profile of luminal B breast cancer , 2012, Biologics : targets & therapy.

[14]  L. Rhodes,et al.  Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat , 2012, Breast Cancer Research.

[15]  M. Campone,et al.  bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer , 2012, Breast Cancer Research and Treatment.

[16]  H. Weiss,et al.  mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. , 2011, Cancer research.

[17]  Meng Li,et al.  MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways , 2011, Oncogene.

[18]  Adrian V. Lee,et al.  The IGF pathway regulates ERα through a S6K1-dependent mechanism in breast cancer cells. , 2011, Molecular endocrinology.

[19]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[20]  Mary Goldman,et al.  The UCSC cancer genomics browser: update 2011 , 2010, Nucleic Acids Res..

[21]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[22]  Feng-jun Wang,et al.  Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. , 2010, Gynecologic oncology.

[23]  D. Sabatini,et al.  Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. , 2010, Molecular cell.

[24]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[25]  N. Sonenberg,et al.  mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs , 2010, Science.

[26]  N. Hay,et al.  FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. , 2010, Developmental cell.

[27]  Shuai Jiang,et al.  MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. , 2010, Cancer research.

[28]  Domenico Coppola,et al.  MicroRNA-155 Regulates Cell Survival, Growth, and Chemosensitivity by Targeting FOXO3a in Breast Cancer* , 2010, The Journal of Biological Chemistry.

[29]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[30]  Philippe P Roux,et al.  mTORC1-Activated S6K1 Phosphorylates Rictor on Threonine 1135 and Regulates mTORC2 Signaling , 2009, Molecular and Cellular Biology.

[31]  E. Ariazi,et al.  New hypotheses and opportunities in endocrine therapy: amplification of oestrogen-induced apoptosis. , 2009, Breast.

[32]  Chin-Lee Wu,et al.  Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. , 2009, Cancer research.

[33]  A. Tee,et al.  Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. , 2009, Cellular signalling.

[34]  Ting Wang,et al.  The UCSC Cancer Genomics Browser , 2009, Nature Methods.

[35]  Ding‐Shinn Chen,et al.  MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. , 2009, Gastroenterology.

[36]  B. Manning,et al.  A complex interplay between Akt, TSC2 and the two mTOR complexes. , 2009, Biochemical Society transactions.

[37]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[38]  Domenico Coppola,et al.  MicroRNA-221/222 Negatively Regulates Estrogen Receptorα and Is Associated with Tamoxifen Resistance in Breast Cancer* , 2008, Journal of Biological Chemistry.

[39]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[40]  P. Pandolfi,et al.  Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. , 2008, The Journal of clinical investigation.

[41]  B. Manning,et al.  The TSC1-TSC2 Complex Is Required for Proper Activation of mTOR Complex 2 , 2008, Molecular and Cellular Biology.

[42]  M. Lacey,et al.  MicroRNA-155 Is an Epstein-Barr Virus-Induced Gene That Modulates Epstein-Barr Virus-Regulated Gene Expression Pathways , 2008, Journal of Virology.

[43]  P. Miron,et al.  Rapamycin inhibits proliferation of estrogen-receptor-positive breast cancer cells. , 2007, The Journal of surgical research.

[44]  T. Curiel,et al.  Antiestrogenic Glyceollins Suppress Human Breast and Ovarian Carcinoma Tumorigenesis , 2006, Clinical Cancer Research.

[45]  Adrian V. Lee,et al.  Progesterone Receptor Loss Correlates with Human Epidermal Growth Factor Receptor 2 Overexpression in Estrogen Receptor–Positive Breast Cancer , 2006, Clinical Cancer Research.

[46]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[47]  Adrian V. Lee,et al.  Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[48]  Shiuan Chen,et al.  Dual Inhibition of mTOR and Estrogen Receptor Signaling In vitro Induces Cell Death in Models of Breast Cancer , 2005, Clinical Cancer Research.

[49]  A. Levine,et al.  The coordinate regulation of the p53 and mTOR pathways in cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  N. Sonenberg,et al.  Upstream and downstream of mTOR. , 2004, Genes & development.

[51]  D. Guertin,et al.  Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton , 2004, Current Biology.

[52]  Ping Zhang,et al.  Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. , 2003, Molecular endocrinology.

[53]  Thomas D. Schmittgen,et al.  Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. , 2000, Analytical biochemistry.

[54]  K. Vaddi SDF-1 – Stromal cell derived factor-1 , 1997 .