A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging

A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm – for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar – and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex.

[1]  D Jancke,et al.  Orientation Formed by a Spot's Trajectory: A Two-Dimensional Population Approach in Primary Visual Cortex , 2000, The Journal of Neuroscience.

[2]  Peter A. Robinson,et al.  Unified neurophysical model of EEG spectra and evoked potentials , 2002, Biological Cybernetics.

[3]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Matsubara,et al.  Local, horizontal connections within area 18 of the cat. , 1988, Progress in brain research.

[5]  Werner von Seelen,et al.  Evolving field models for inhibition effects in early vision , 2002, Neurocomputing.

[6]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[7]  Cees van Leeuwen,et al.  Distributed Dynamical Computation in Neural Circuits with Propagating Coherent Activity Patterns , 2009, PLoS Comput. Biol..

[8]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[9]  Perambur S. Neelakanta,et al.  Stochastical aspects of neuronal dynamics: Fokker-Planck approach , 1993, Biological Cybernetics.

[10]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[11]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[12]  F. Sengpiel,et al.  Intracortical Origins of Interocular Suppression in the Visual Cortex , 2005, The Journal of Neuroscience.

[13]  W Singer,et al.  Cat parastriate cortex: a primary or secondary visual area. , 1975, Journal of neurophysiology.

[14]  Viktor K. Jirsa,et al.  Connectivity and dynamics of neural information processing , 2007, Neuroinformatics.

[15]  Alex S. Ferecskó,et al.  Model‐based analysis of excitatory lateral connections in the visual cortex , 2006, The Journal of comparative neurology.

[16]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .

[17]  John P. Spencer,et al.  An Embodied Approach to Cognitive Systems: A Dynamic Neural Field Theory of Spatial Working Memory , 2006 .

[18]  J. Kaas,et al.  The Primate visual system , 2003 .

[19]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[20]  Jane W Chan,et al.  The Cat Primary Visual Cortex , 2006 .

[21]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[22]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[23]  François Grimbert,et al.  Neural Field Model of VSD Optical Imaging Signals , 2007 .

[24]  Akitoshi Hanazawa,et al.  Cortical Dynamics Subserving Visual Apparent Motion , 2008, Cerebral cortex.

[25]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[26]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[27]  J. Eggert,et al.  Unifying framework for neuronal assembly dynamics. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[29]  H. Dinse,et al.  Time-variant processing in V1: from microscopic (single cell) to mesoscopic (population) levels , 2001, Trends in Neurosciences.

[30]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[31]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[32]  P. Protter Stochastic integration and differential equations , 1990 .

[33]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[34]  A Grinvald,et al.  In-vivo Optical Imaging of Cortical Architecture and Dynamics , 1999 .

[35]  B. Cragg,et al.  Projections from the lateral geniculate nucleus in the cat and monkey. , 1967, Journal of anatomy.

[36]  Gregor Schöner,et al.  Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex , 2004, The Journal of physiology.

[37]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  M. Berkley,et al.  Cortical projections from the dorsal lateral geniculate nucleus of cats , 1967, The Journal of comparative neurology.

[39]  U. Eysel,et al.  Functional and Structural Topography of Horizontal Inhibitory Connections in Cat Visual Cortex , 1993, The European journal of neuroscience.

[40]  J. Cowan,et al.  A mathematical theory of visual hallucination patterns , 1979, Biological Cybernetics.

[41]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[42]  L. Ricciardi,et al.  The Ornstein-Uhlenbeck process as a model for neuronal activity , 1979, Biological Cybernetics.

[43]  J. Boyd,et al.  Presence of GABA-immunoreactive neurons within intracortical patches in area 18 of the cat , 1992, Brain Research.

[44]  Robert A. Frazor,et al.  Standing Waves and Traveling Waves Distinguish Two Circuits in Visual Cortex , 2007, Neuron.

[45]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[46]  Misha Tsodyks,et al.  From , 2020, Definitions.

[47]  Y. Amitai,et al.  Propagating neuronal discharges in neocortical slices: computational and experimental study. , 1997, Journal of neurophysiology.

[48]  Christian Igel,et al.  Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.

[49]  Arthur Konnerth,et al.  Voltage-sensitive dyes measure potential changes in axons and glia of the frog optic nerve , 1986, Neuroscience Letters.

[50]  Christian Igel,et al.  Evolutionary Adaptation of Nonlinear Dynamical Systems in Computational Neuroscience , 2004, Genetic Programming and Evolvable Machines.

[51]  W Singer,et al.  Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. , 1977, Journal of neurophysiology.

[52]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[53]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[54]  Aijaz A. Baloch,et al.  A neural model of high-level motion processing: Line motion and formotion dynamics , 1997, Vision Research.

[55]  J. Griffith A field theory of neural nets. II. Properties of the field equations. , 1965, The Bulletin of mathematical biophysics.

[56]  Aaditya V. Rangan,et al.  Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Claus Bundesen,et al.  Images of Illusory Motion in Primary Visual Cortex , 2006, Journal of Cognitive Neuroscience.

[58]  P. Roland,et al.  Cortical feedback depolarization waves: A mechanism of top-down influence on early visual areas , 2006, Proceedings of the National Academy of Sciences.

[59]  J. Griffith A field theory of neural nets: I. Derivation of field equations. , 1963, The Bulletin of mathematical biophysics.

[60]  S. Vijay Anand,et al.  The linearity and selectivity of neuronal responses in awake visual cortex. , 2009, Journal of vision.

[61]  U. Eysel,et al.  Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. , 1997, Cerebral cortex.

[62]  R. Traub,et al.  Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. , 1988, Journal of neurophysiology.

[63]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  L. Maffei,et al.  Spatial frequency rows in the striate visual cortex , 1977, Vision Research.

[65]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[66]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[67]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[68]  O. Hikosaka,et al.  Voluntary and Stimulus-Induced Attention Detected as Motion Sensation , 1993, Perception.

[69]  Alan Peters,et al.  A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex , 1981, The Journal of comparative neurology.

[70]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[71]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[72]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[73]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[74]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[75]  Wolfram Erlhagen,et al.  The role of action plans and other cognitive factors in motion extrapolation: A modelling study , 2004 .

[76]  S. Levay,et al.  Patchy intrinsic projections in visual cortex, area 18, of the cat: Morphological and immunocytochemical evidence for an excitatory function , 1988, The Journal of comparative neurology.

[77]  Barbara Chapman,et al.  Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.

[78]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[79]  Stephen R. Marsland,et al.  Convergence Properties of (μ + λ) Evolutionary Algorithms , 2011, AAAI.

[80]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[81]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[82]  L. Darrell Whitley,et al.  Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks , 2006, PPSN.

[83]  Thomas Trappenberg,et al.  Tracking population densities using dynamic neural fields with moderately strong inhibition , 2008, Cognitive Neurodynamics.

[84]  N. Graham,et al.  Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision , 2000, Vision Research.

[85]  A Watanabe,et al.  Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[86]  P. Robinson,et al.  Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  Harley Flanders,et al.  Differentiation Under the Integral Sign , 1973 .

[88]  H. Haken,et al.  A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics , 1997 .

[89]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[91]  U. Eysel,et al.  Structure and dynamics of receptive fields in the visual cortex of the cat (area 18) and the influence of GABAergic inhibition , 1998, The European journal of neuroscience.

[92]  B R Payne,et al.  Organization of orientation and direction selectivity in areas 17 and 18 of cat cerebral cortex. , 1987, Journal of neurophysiology.

[93]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[94]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[95]  A. Cowey,et al.  The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.

[96]  M. Cynader,et al.  Functional topography in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  P. Somogyi,et al.  Targets and Quantitative Distribution of GABAergic Synapses in the Visual Cortex of the Cat , 1990, The European journal of neuroscience.

[98]  S. Ebbesson Evolution and ontogeny of neural circuits , 1984, Behavioral and Brain Sciences.

[99]  Amir C. Akhavan,et al.  Parametric Population Representation of Retinal Location: Neuronal Interaction Dynamics in Cat Primary Visual Cortex , 1999, The Journal of Neuroscience.

[100]  F. Chavane,et al.  Cortical response field dynamics in cat visual cortex. , 2007, Cerebral cortex.

[101]  M. Grünau,et al.  Two Contributions to Motion Induction: A Preattentive Effect and Facilitation due to Attentional Capture , 1996, Vision Research.

[102]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[103]  A. Grinvald,et al.  Spontaneously emerging cortical representations of visual attributes , 2003, Nature.

[104]  A. Hendrickson,et al.  The autoradiographic demonstration of axonal connections in the central nervous system. , 1972, Brain research.

[105]  D. Whitteridge,et al.  Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat , 1985, The Journal of comparative neurology.

[106]  J. O'leary,et al.  Structure of the area striata of the cat , 1941 .

[107]  Christian Igel,et al.  Optimization of dynamic neural fields , 2001, Neurocomputing.

[108]  G. Mitchison,et al.  Long axons within the striate cortex: their distribution, orientation, and patterns of connection. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[109]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[110]  J. T. M. Kay Color Atlas and Textbook of Human Anatomy , 1979 .

[111]  O. Hikosaka,et al.  Focal visual attention produces illusory temporal order and motion sensation , 1993, Vision Research.

[112]  Thomas Wennekers,et al.  Dynamic Approximation of Spatiotemporal Receptive Fields in Nonlinear Neural Field Models , 2002, Neural Computation.

[113]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[114]  P. Somogyi,et al.  Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat , 2004, Experimental Brain Research.

[115]  Lawrence Sirovich,et al.  On the Simulation of Large Populations of Neurons , 2004, Journal of Computational Neuroscience.

[116]  Walter J. Freeman,et al.  Neurodynamics: An Exploration in Mesoscopic Brain Dynamics , 2000, Perspectives in Neural Computing.

[117]  R W Guillery,et al.  Some principles of organization in the dorsal lateral geniculate nucleus. , 1972, Brain, behavior and evolution.

[118]  F. Chavane,et al.  Imaging cortical correlates of illusion in early visual cortex , 2004, Nature.

[119]  I Fariñas,et al.  Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment , 1991, The Journal of comparative neurology.

[120]  G. Schöner,et al.  The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations , 1999, Journal of Neuroscience Methods.

[121]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[122]  Bruce W. Knight,et al.  Dynamics of Encoding in Neuron Populations: Some General Mathematical Features , 2000, Neural Computation.

[123]  Thomas Wennekers,et al.  2009 Special Issue: Spatiotemporal dynamics in the cortical microcircuit: A modelling study of primary visual cortex layer 2/3 , 2009 .

[124]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[125]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[126]  P. Somogyi,et al.  Differentially Interconnected Networks of GABAergic Interneurons in the Visual Cortex of the Cat , 1998, The Journal of Neuroscience.

[127]  Karl J. Friston,et al.  Modelling event-related responses in the brain , 2005, NeuroImage.

[128]  E. Seidemann,et al.  Complex Dynamics of V1 Population Responses Explained by a Simple Gain-Control Model , 2009, Neuron.

[129]  H. Akaike A new look at the statistical model identification , 1974 .

[130]  Kevan A. C. Martin,et al.  The neurons in layer 1 of cat visual cortex , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[131]  G. Schöner,et al.  Dynamic Field Theory of Movement Preparation , 2022 .

[132]  A. Treisman,et al.  The line-motion illusion: attention or impletion? , 1997, Journal of experimental psychology. Human perception and performance.

[133]  Aaditya V. Rangan,et al.  Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[134]  Petros Koumoutsakos,et al.  Learning probability distributions in continuous evolutionary algorithms – a comparative review , 2004, Natural Computing.

[135]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental brain research.

[136]  R. L. Beurle Properties of a mass of cells capable of regenerating pulses , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[137]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[138]  U. Eysel,et al.  Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17) , 1992, Neuroscience.

[139]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[140]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[141]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[142]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[143]  J. Kao,et al.  Organization of Intracortical Circuits in Relation to Direction Preference Maps in Ferret Visual Cortex , 1999, The Journal of Neuroscience.

[144]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[145]  K. Nakayama,et al.  Sustained and transient components of focal visual attention , 1989, Vision Research.

[146]  W. Freeman Mass action in the nervous system : examination of the neurophysiological basis of adaptive behavior through the EEG , 1975 .

[147]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[148]  A. Grinvald,et al.  Real-time optical imaging of naturally evoked electrical activity in intact frog brain , 1984, Nature.

[149]  L. Palmer,et al.  Spatio-temporal receptive-field structure of phasic W cells in the cat retina , 1995, Visual Neuroscience.

[150]  D. Whitteridge,et al.  Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex , 2004, Experimental Brain Research.

[151]  A. Grinvald,et al.  Dynamics and Constancy in Cortical Spatiotemporal Patterns of Orientation Processing , 2002, Science.

[152]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[153]  Jian-Young Wu,et al.  Propagating Activation during Oscillations and Evoked Responses in Neocortical Slices , 1999, The Journal of Neuroscience.

[154]  Gregor Schöner,et al.  Making Driver Modeling Attractive , 2005, IEEE Intell. Syst..

[155]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[156]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.