Active planning for underwater inspection and the benefit of adaptivity

We discuss the problem of inspecting an underwater structure, such as a submerged ship hull, with an autonomous underwater vehicle (AUV). Unlike a large body of prior work, we focus on planning the views of the AUV to improve the quality of the inspection, rather than maximizing the accuracy of a given data stream. We formulate the inspection planning problem as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We rigorously analyze the benefit of adaptive re-planning for such problems, and we prove that the potential benefit of adaptivity can be reduced from an exponential to a constant factor by changing the problem from cost minimization with a constraint on information gain to variance reduction with a constraint on cost. Such analysis allows the use of robust, non-adaptive planning algorithms that perform competitively with adaptive algorithms. Based on our analysis, we propose a method for constructing 3D meshes from sonar-derived point clouds, and we introduce uncertainty modeling through non-parametric Bayesian regression. Finally, we demonstrate the benefit of active inspection planning using sonar data from ship hull inspections with the Bluefin-MIT Hovering AUV.

[1]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[2]  Thorn Emi Television Rentals A Complete System , 1984 .

[3]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[4]  C. Ian Connolly,et al.  The determination of next best views , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[5]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[6]  Hugh F. Durrant-Whyte,et al.  A Bayesian Approach to Optimal Sensor Placement , 1990, Int. J. Robotics Res..

[7]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[8]  Frank P. Ferrie,et al.  Autonomous exploration: driven by uncertainty , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[10]  A. Mijiritskii,et al.  Surface reconstruction of Fe3O4(100) , 2000 .

[11]  Mike Broadwell The Complete System , 2000 .

[12]  Barbara Anne am Ende 3D Mapping of Underwater Caves , 2001, IEEE Computer Graphics and Applications.

[13]  Frank P. Ferrie,et al.  Entropy-based gaze planning , 2001, Image Vis. Comput..

[14]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[15]  Joachim Denzler,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  David Casasent,et al.  Feature Space Trajectory Methods for Active Computer Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  E. Belcher,et al.  Dual-Frequency Identification Sonar (DIDSON) , 2002, Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No.02EX556).

[18]  Dorin Comaniciu,et al.  Conditional feature sensitivity: a unifying view on active recognition and feature selection , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[19]  Tim Weyrich,et al.  Post-processing of Scanned 3D Surface Data , 2004, PBG.

[20]  Subhashis Banerjee,et al.  Active recognition through next view planning: a survey , 2004, Pattern Recognit..

[21]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[22]  U. Castellani,et al.  A complete system for on-line 3D modelling from acoustic images , 2005, Signal Process. Image Commun..

[23]  Andreas Krause,et al.  Near-optimal Nonmyopic Value of Information in Graphical Models , 2005, UAI.

[24]  Shengyong Chen,et al.  Vision sensor planning for 3-D model acquisition , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[26]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[27]  Andrew Fitzgibbon,et al.  Gaussian Process Implicit Surfaces , 2006 .

[28]  Jan Vondrák,et al.  Stochastic Covering and Adaptivity , 2006, LATIN.

[29]  C. Rasmussen,et al.  Nonstationary Gaussian Process Regression using a Latent Extension of the Input Space , 2006 .

[30]  Franz S. Hover,et al.  A Vehicle System for Autonomous Relative Survey of In-Water Ships , 2007 .

[31]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics) , 2007 .

[32]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[33]  David Wettergreen,et al.  Real‐Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels , 2007, J. Field Robotics.

[34]  Paolo Cignoni,et al.  MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.

[35]  Abhimanyu Das,et al.  Algorithms for subset selection in linear regression , 2008, STOC.

[36]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[37]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[38]  J. Vondrák,et al.  Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity , 2008 .

[39]  David S. Wettergreen,et al.  Intelligent Maps for Autonomous Kilometer-Scale Science Survey , 2008 .

[40]  Jan-Michael Frahm,et al.  Developing visual sensing strategies through next best view planning , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Geoffrey A. Hollinger,et al.  Efficient Multi-robot Search for a Moving Target , 2009, Int. J. Robotics Res..

[42]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[43]  Hugh F. Durrant-Whyte,et al.  Gaussian Process modeling of large scale terrain , 2009, 2009 IEEE International Conference on Robotics and Automation.

[44]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[45]  Christian Laugier,et al.  The International Journal of Robotics Research (IJRR) - Special issue on ``Field and Service Robotics '' , 2009 .

[46]  Ryan M. Eustice,et al.  Pose-graph visual SLAM with geometric model selection for autonomous underwater ship hull inspection , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Daniel Cohen-Or,et al.  Consolidation of unorganized point clouds for surface reconstruction , 2009, ACM Trans. Graph..

[48]  Franz S. Hover,et al.  Imaging sonar-aided navigation for autonomous underwater harbor surveillance , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  P. Surynková,et al.  Surface Reconstruction , 2010 .

[50]  Nicholas J. Butko,et al.  Active perception , 2010 .

[51]  Andreas Krause,et al.  Near-Optimal Bayesian Active Learning with Noisy Observations , 2010, NIPS.

[52]  Tara Javidi,et al.  Active M-ary sequential hypothesis testing , 2010, 2010 IEEE International Symposium on Information Theory.

[53]  Andreas Birk,et al.  Plane-based registration of sonar data for underwater 3D mapping , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[54]  Shengyong Chen,et al.  Active vision in robotic systems: A survey of recent developments , 2011, Int. J. Robotics Res..

[55]  Franz S. Hover,et al.  Planning Complex Inspection Tasks Using Redundant Roadmaps , 2011, ISRR.

[56]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[57]  Geoffrey A. Hollinger,et al.  Active Classification: Theory and Application to Underwater Inspection , 2011, ISRR.

[58]  Andreas Birk,et al.  Spectral registration of noisy sonar data for underwater 3D mapping , 2011, Auton. Robots.

[59]  Dieter Fox,et al.  Autonomous generation of complete 3D object models using next best view manipulation planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[60]  Marc Toussaint,et al.  Gaussian process implicit surfaces for shape estimation and grasping , 2011, 2011 IEEE International Conference on Robotics and Automation.

[61]  Geoffrey A. Hollinger,et al.  Uncertainty-driven view planning for underwater inspection , 2012, 2012 IEEE International Conference on Robotics and Automation.

[62]  Franz S. Hover,et al.  Advanced perception, navigation and planning for autonomous in-water ship hull inspection , 2012, Int. J. Robotics Res..

[63]  Andreas Birk,et al.  Uncertainty estimation for a 6-DoF spectral registration method as basis for sonar-based underwater 3D SLAM , 2012, 2012 IEEE International Conference on Robotics and Automation.

[64]  Alan Yuille,et al.  Active Vision , 2014, Computer Vision, A Reference Guide.

[65]  Sequential Tests of Statistical Hypotheses. , 1977 .