Population Coding and the Labeling Problem: Extrinsic Versus Intrinsic Representations

Current population coding methods, including weighted averaging and Bayesian estimation, are based on extrinsic representations. These require that neurons be labeled with response parameters, such as tuning curve peaks or noise distributions, which are tied to some external, world-based metric scale. Firing rates alone, without this external labeling, are insufficient to represent a variable. However, the extrinsic approach does not explain how such neural labeling is implemented. A radically different and perhaps more physiological approach is based on intrinsic representations, which have access only to firing rates. Because neurons are unlabeled, intrinsic coding represents relative, rather than absolute, values of a variable. We show that intrinsic coding has representational advantages, including invariance, categorization, and discrimination, and in certain situations it may also recover absolute stimulus values.

[1]  Charles P. Ratliff,et al.  Design of a Neuronal Array , 2008, The Journal of Neuroscience.

[2]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[3]  H Sompolinsky,et al.  Simple models for reading neuronal population codes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Emilio Salinas,et al.  Vector reconstruction from firing rates , 1994, Journal of Computational Neuroscience.

[6]  P. Churchland Plato's Camera: How the Physical Brain Captures a Landscape of Abstract Universals , 2012 .

[7]  A. Fuchs,et al.  Saccadic gain modification: visual error drives motor adaptation. , 1998, Journal of neurophysiology.

[8]  Eric T. Carlson,et al.  A neural code for three-dimensional object shape in macaque inferotemporal cortex , 2008, Nature Neuroscience.

[9]  Peter E. Latham,et al.  Narrow Versus Wide Tuning Curves: What's Best for a Population Code? , 1999, Neural Computation.

[10]  Charles H. Anderson,et al.  BASIC ELEMENTS OF BIOLOGICAL COMPUTATIONAL SYSTEMS , 1994 .

[11]  Geoffrey E. Hinton Learning multiple layers of representation , 2007, Trends in Cognitive Sciences.

[12]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[14]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[15]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[16]  L F Abbott,et al.  Decoding neuronal firing and modelling neural networks , 1994, Quarterly Reviews of Biophysics.

[17]  Maurice Merleau-Ponty The Primacy Of Perception , 1964 .

[18]  R. Andersen,et al.  Neural prosthetic control signals from plan activity , 2003, Neuroreport.

[19]  Stevan Harnad The Symbol Grounding Problem , 1999, ArXiv.

[20]  William K. Estes,et al.  Cognitive Processes that Resemble Perceptual Processes , 2014 .

[21]  R. Shepard,et al.  Second-order isomorphism of internal representations: Shapes of states ☆ , 1970 .

[22]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[23]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[24]  Terrence J. Sejnowski,et al.  Neuronal Tuning: To Sharpen or Broaden? , 1999, Neural Computation.

[25]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[26]  Nathan Intrator,et al.  Learning as Extraction of Low-Dimensional Representations , 1997 .

[27]  M. Jeannerod,et al.  Visual cognition: a new look at the two-visual systems model , 2005, Neuropsychologia.

[28]  James A. Anderson,et al.  An Introduction To Neural Networks , 1998 .

[29]  Bijan Pesaran,et al.  A Method for Detection and Classification of Events in Neural Activity , 2006, IEEE Transactions on Biomedical Engineering.

[30]  R. A. WEALE Trichromatic Ideas in the Seventeenth and Eighteenth Centuries , 1957, Nature.

[31]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[32]  Geoffrey E. Hinton,et al.  Distributed Representations , 1986, The Philosophy of Artificial Intelligence.

[33]  Michael J. Black,et al.  Spike Train SIMilarity Space (SSIMS): A Framework for Single Neuron and Ensemble Data Analysis , 2015, Neural Computation.

[34]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[35]  Margaret E. Sereno Neural Computation of Pattern Motion: Modeling Stages of Motion Analysis in the Primate Visual Cortex , 1993 .

[36]  D. Perrett,et al.  The `Ideal Homunculus': decoding neural population signals , 1998, Trends in Neurosciences.

[37]  H. Wilson,et al.  Modified line-element theory for spatial-frequency and width discrimination. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[38]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[39]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[40]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[41]  P. Gochin,et al.  The representation of shape in the temporal lobe , 1996, Behavioural Brain Research.

[42]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[43]  J. Robson,et al.  Spatial-frequency channels in human vision. , 1971, Journal of the Optical Society of America.

[44]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[45]  R. Sekuler,et al.  The independence of channels in human vision selective for direction of movement. , 1975, The Journal of physiology.

[46]  David Hume A Treatise of Human Nature: Being an Attempt to introduce the experimental Method of Reasoning into Moral Subjects , 1972 .

[47]  Terrence J. Sejnowski,et al.  Network model of shape-from-shading: neural function arises from both receptive and projective fields , 1988, Nature.

[48]  Geoffrey E. Hinton Shape Representation in Parallel Systems , 1981, IJCAI.

[49]  J. J. Vos Line elements and physiological models of color vision , 1979 .

[50]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[51]  D. A. Robinson,et al.  The distributed representation of vestibulo-oculomotor signals by brain-stem neurons , 1989, Biological Cybernetics.

[52]  W. Köhler Gestalt Psychology: An Introduction to New Concepts in Modern Psychology , 1970 .

[53]  H. S. Seung,et al.  Cognition. The manifold ways of perception. , 2000, Science.

[54]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[55]  C. Connor,et al.  Neural representations for object perception: structure, category, and adaptive coding. , 2011, Annual review of neuroscience.

[56]  Erk Subasi,et al.  Grasp Movement Decoding from Premotor and Parietal Cortex , 2011, The Journal of Neuroscience.

[57]  Michael J. Black,et al.  Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex , 2001, NIPS.

[58]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[59]  I. Biederman,et al.  Representation of regular and irregular shapes in macaque inferotemporal cortex. , 2005, Cerebral cortex.

[60]  Andrew S. Whitford,et al.  Cortical control of a prosthetic arm for self-feeding , 2008, Nature.

[61]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[62]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[63]  E N Brown,et al.  A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells , 1998, The Journal of Neuroscience.

[64]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[65]  Nikolaus Kriegeskorte,et al.  Relating Population-Code Representations between Man, Monkey, and Computational Models , 2009, Front. Neurosci..

[66]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[67]  Paul M. Churchland,et al.  Neural worlds and real worlds , 2002, Nature Reviews Neuroscience.

[68]  J. Mollon 1 – The Origins of Modern Color Science , 2003 .

[69]  E. S. Robinson A History of Experimental Psychology , 1930 .

[70]  Doris Y. Tsao,et al.  A face feature space in the macaque temporal lobe , 2009, Nature Neuroscience.

[71]  S. R. Lehky,et al.  Comparison of shape encoding in primate dorsal and ventral visual pathways. , 2007, Journal of neurophysiology.

[72]  W T Newsome,et al.  How Is a Sensory Map Read Out? Effects of Microstimulation in Visual Area MT on Saccades and Smooth Pursuit Eye Movements , 1997, The Journal of Neuroscience.

[73]  R. Zemel,et al.  Inference and computation with population codes. , 2003, Annual review of neuroscience.

[74]  D Rose,et al.  The Historical Roots of the Theories of Local Signs and Labelled Lines , 1999, Perception.

[75]  E. Boring A history of experimental psychology, 2nd ed. , 1950 .

[76]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[77]  P. Földiák,et al.  The ‘Ideal Homunculus’: Statistical Inference from Neural Population Responses , 1993 .

[78]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[79]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[80]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[81]  C Ghez,et al.  Learning of Visuomotor Transformations for Vectorial Planning of Reaching Trajectories , 2000, The Journal of Neuroscience.

[82]  Dawn M. Taylor,et al.  Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.

[83]  Patrick J. F. Groenen,et al.  Modern multidimensional scaling: Theory and applications, 2nd ed. , 2005 .

[84]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[85]  J P Thomas,et al.  Detection and identification: how are they related? , 1985, Journal of the Optical Society of America. A, Optics and image science.

[86]  T. Young The Bakerian Lecture. On the Theory of Light and Colours. [Abstract] , 1800 .

[87]  R. Vogels,et al.  Population coding of stimulus orientation by striate cortical cells , 1990, Biological Cybernetics.

[88]  T. Sejnowski,et al.  Neural network model of visual cortex for determining surface curvature from images of shaded surfaces , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[89]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[90]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[91]  Joe Z. Tsien,et al.  The organizing principles of real-time memory encoding: Neural clique assemblies and universal neural codes , 2007, Neuroscience Research.

[92]  J. Tsien,et al.  Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes , 2006, Trends in Neurosciences.

[93]  Sidney R. Lehky,et al.  Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates , 2014, Front. Integr. Neurosci..

[94]  R N Shepard,et al.  Multidimensional Scaling, Tree-Fitting, and Clustering , 1980, Science.

[95]  Sidney R. Lehky,et al.  Frontiers in Computational Neuroscience Computational Neuroscience , 2022 .

[96]  Margaret E. Sereno,et al.  Learning to See Rotation and Dilation with a Hebb Rule , 1990, NIPS.

[97]  S Edelman,et al.  Representation is representation of similarities , 1996, Behavioral and Brain Sciences.

[98]  Terence D Sanger,et al.  Neural population codes , 2003, Current Opinion in Neurobiology.

[99]  J. Bergen,et al.  A four mechanism model for threshold spatial vision , 1979, Vision Research.

[100]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[101]  Sidney R. Lehky,et al.  Frontiers in Computational Neuroscience Computational Neuroscience , 2022 .

[102]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[103]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[104]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[105]  John F. Kalaska,et al.  Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations , 1983 .

[106]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[107]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[108]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[109]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.