A structural model of the active ribosome-bound membrane protein insertase YidC

The integration of most membrane proteins into the cytoplasmic membrane of bacteria occurs co-translationally. The universally conserved YidC protein mediates this process either individually as a membrane protein insertase, or in concert with the SecY complex. Here, we present a structural model of YidC based on evolutionary co-variation analysis, lipid-versus-protein-exposure and molecular dynamics simulations. The model suggests a distinctive arrangement of the conserved five transmembrane domains and a helical hairpin between transmembrane segment 2 (TM2) and TM3 on the cytoplasmic membrane surface. The model was used for docking into a cryo-electron microscopy reconstruction of a translating YidC-ribosome complex carrying the YidC substrate FOc. This structure reveals how a single copy of YidC interacts with the ribosome at the ribosomal tunnel exit and identifies a site for membrane protein insertion at the YidC protein-lipid interface. Together, these data suggest a mechanism for the co-translational mode of YidC-mediated membrane protein insertion. DOI: http://dx.doi.org/10.7554/eLife.03035.001

[1]  Martin Grosell,et al.  Biochimica et Biophysica Acta (BBA)/Biomembranes: Preface , 2003 .

[2]  Masasuke Yoshida,et al.  Short Hydrophobic Segments in the Mature Domain of ProOmpA Determine Its Stepwise Movement during Translocation across the Cytoplasmic Membrane of Escherichia coli* , 1997, The Journal of Biological Chemistry.

[3]  R. Beckmann,et al.  Visualization of a polytopic membrane protein during SecY-mediated membrane insertion , 2014, Nature Communications.

[4]  Walter L Ash,et al.  Computer simulations of membrane proteins. , 2004, Biochimica et biophysica acta.

[5]  Richard Henderson,et al.  Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy , 2011, Journal of molecular biology.

[6]  T. Rapoport Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes , 2007, Nature.

[7]  Dominika Elmlund,et al.  SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles. , 2012, Journal of structural biology.

[8]  Thomas Becker,et al.  Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion , 2014, Nature.

[9]  W. Kühlbrandt,et al.  Projection structure of yidC: a conserved mediator of membrane protein assembly. , 2008, Journal of molecular biology.

[10]  Chao Yang,et al.  SPARX, a new environment for Cryo-EM image processing. , 2007, Journal of structural biology.

[11]  Martin Wiedmann,et al.  YidC mediates membrane protein insertion in bacteria , 2000, Nature.

[12]  Bostjan Kobe,et al.  Structural Proteomics , 2008, Methods in Molecular Biology™.

[13]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[14]  M. van der Laan,et al.  F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis , 2004, The Journal of cell biology.

[15]  Johannes Söding,et al.  Fast and accurate automatic structure prediction with HHpred , 2009, Proteins.

[16]  R. Beckmann,et al.  Molecular basis for the ribosome functioning as an L-tryptophan sensor. , 2014, Cell reports.

[17]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[18]  G. Koningstein,et al.  The Conserved Third Transmembrane Segment of YidC Contacts Nascent Escherichia coli Inner Membrane Proteins* , 2008, Journal of Biological Chemistry.

[19]  James Z Chen,et al.  SIGNATURE: a single-particle selection system for molecular electron microscopy. , 2007, Journal of structural biology.

[20]  Timothy Nugent,et al.  Membrane protein structural bioinformatics. , 2012, Journal of structural biology.

[21]  A. Driessen,et al.  SecDFyajC forms a heterotetrameric complex with YidC , 2002, Molecular microbiology.

[22]  P. Slonimski,et al.  OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. , 1994, Journal of molecular biology.

[23]  J Frank,et al.  Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. , 1988, Journal of molecular biology.

[24]  R. Glaeser,et al.  Review: automatic particle detection in electron microscopy. , 2001, Journal of structural biology.

[25]  K. Schulten,et al.  Molecular dynamics simulations of membrane channels and transporters. , 2009, Current opinion in structural biology.

[26]  A. Driessen,et al.  Mechanisms of YidC-mediated Insertion and Assembly of Multimeric Membrane Protein Complexes* , 2008, Journal of Biological Chemistry.

[27]  Klaus Schulten,et al.  Molecular dynamics simulations of proteins in lipid bilayers. , 2005, Current opinion in structural biology.

[28]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[29]  H. Kaback,et al.  YidC Protein, a Molecular Chaperone for LacY Protein Folding via the SecYEG Protein Machinery* , 2013, The Journal of Biological Chemistry.

[30]  J. Brunner,et al.  YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids , 2001, EMBO reports.

[31]  A. Kuhn,et al.  The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. , 2007, Journal of molecular biology.

[32]  Alessandro Senes,et al.  The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Marin van Heel,et al.  IMAGIC - A FAST, FLEXIBLE AND FRIENDLY IMAGE-ANALYSIS SOFTWARE SYSTEM , 1981 .

[34]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[35]  T. Rapoport,et al.  Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY , 2005, The Journal of cell biology.

[36]  J. Frank,et al.  Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules. , 2009, Journal of structural biology.

[37]  Ruedi Aebersold,et al.  Architecture of the large subunit of the mammalian mitochondrial ribosome , 2013, Nature.

[38]  Nir Ben-Tal,et al.  Structural determinants of transmembrane helical proteins. , 2009, Structure.

[39]  S. Wagner,et al.  Dual Activities of Odorants on Olfactory and Nuclear Hormone Receptors* , 2008, The Journal of Biological Chemistry.

[40]  G. von Heijne,et al.  Membrane Topology of the 60-kDa Oxa1p Homologue fromEscherichia coli * , 1998, The Journal of Biological Chemistry.

[41]  G. Heijne,et al.  Recognition of transmembrane helices by the endoplasmic reticulum translocon , 2005, Nature.

[42]  A. Kuhn,et al.  The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis , 2008, FEBS letters.

[43]  T. Rapoport,et al.  Bacterial protein translocation requires only one copy of the SecY complex in vivo , 2012, The Journal of cell biology.

[44]  George Khelashvili,et al.  The cost of living in the membrane: a case study of hydrophobic mismatch for the multi-segment protein LeuT. , 2013, Chemistry and physics of lipids.

[45]  D. Boehringer,et al.  YidC and Oxa1 form dimeric insertion pores on the translating ribosome. , 2009, Molecular cell.

[46]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[47]  G. von Heijne,et al.  YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase , 2000, The EMBO journal.

[48]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[49]  T. Rapoport,et al.  Structure of the SecY channel during initiation of protein translocation , 2013, Nature.

[50]  Stephan Wickles,et al.  Structural basis for TetM-mediated tetracycline resistance , 2012, Proceedings of the National Academy of Sciences.

[51]  J. Frank,et al.  Structure of the Mammalian Ribosomal 43S Preinitiation Complex Bound to the Scanning Factor DHX29 , 2013, Cell.

[52]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[53]  Doron Gerber,et al.  Specificity in Transmembrane Helix-Helix Interactions Mediated by Aromatic Residues* , 2007, Journal of Biological Chemistry.

[54]  H. G. Baker,et al.  Differentiation of populations. , 1970, Science.

[55]  G. Vonheijne,et al.  Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues , 1989, Nature.

[56]  Klaus Schulten,et al.  Structural Insight into Nascent Polypeptide Chain–Mediated Translational Stalling , 2009, Science.

[57]  A. Kuhn,et al.  Dynamic Disulfide Scanning of the Membrane-inserting Pf3 Coat Protein Reveals Multiple YidC Substrate Contacts* , 2011, The Journal of Biological Chemistry.

[58]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[59]  W. Wickner,et al.  Sec‐dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop‐transfer function , 1998, The EMBO journal.

[60]  M. Urbanus,et al.  Sec‐dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC , 2001, EMBO reports.

[61]  H. Niki,et al.  Unbalanced Charge Distribution as a Determinant for Dependence of a Subset of Escherichia coli Membrane Proteins on the Membrane Insertase YidC , 2011, mBio.

[62]  Gunnar von Heijne,et al.  Mechanisms of integral membrane protein insertion and folding. , 2015, Journal of molecular biology.

[63]  Achim Tresch,et al.  Automatic post-picking using MAPPOS improves particle image detection from Cryo-EM micrographs , 2011, Journal of structural biology.

[64]  A. Kuhn,et al.  Defining the Regions of Escherichia coli YidC That Contribute to Activity* , 2003, Journal of Biological Chemistry.

[65]  Michael Davis Cost of Living , 1969, Nature.

[66]  D. Engelman,et al.  Sequence specificity in the dimerization of transmembrane alpha-helices. , 1992, Biochemistry.

[67]  R. Beckmann,et al.  The C‐terminal regions of YidC from Rhodopirellula baltica and Oceanicaulis alexandrii bind to ribosomes and partially substitute for SRP receptor function in Escherichia coli , 2014, Molecular microbiology.

[68]  D. Baker,et al.  Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era , 2013, Proceedings of the National Academy of Sciences.

[69]  Daniel N. Wilson,et al.  Structures of the human and Drosophila 80S ribosome , 2013, Nature.

[70]  Frank Sargent,et al.  A subset of bacterial inner membrane proteins integrated by the twin‐arginine translocase , 2003, Molecular microbiology.

[71]  I. Sinning,et al.  The Crystal Structure of the Periplasmic Domain of the Escherichia coli Membrane Protein Insertase YidC Contains a Substrate Binding Cleft* , 2008, Journal of Biological Chemistry.

[72]  I. Vorobyov,et al.  The different interactions of lysine and arginine side chains with lipid membranes. , 2013, The journal of physical chemistry. B.

[73]  B. Honig,et al.  Stability of "salt bridges" in membrane proteins. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Klaus Schulten,et al.  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[75]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[76]  Timothy Nugent,et al.  Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis , 2012, Proceedings of the National Academy of Sciences.

[77]  W. Wickner,et al.  Bacterial Protein Translocation , 1988 .

[78]  A. Kuhn,et al.  Direct Interaction of YidC with the Sec-independent Pf3 Coat Protein during Its Membrane Protein Insertion* , 2002, The Journal of Biological Chemistry.

[79]  Christian Cole,et al.  The Jpred 3 secondary structure prediction server , 2008, Nucleic Acids Res..

[80]  J. Frank,et al.  SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs , 2008, Nature Protocols.

[81]  G. von Heijne,et al.  Asn‐ and Asp‐mediated interactions between transmembrane helices during translocon‐mediated membrane protein assembly , 2006, EMBO reports.

[82]  Arne Elofsson,et al.  TOPCONS: consensus prediction of membrane protein topology , 2009, Nucleic Acids Res..

[83]  R. Burton,et al.  Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA. , 2012, Molecular biology and evolution.

[84]  Thomas A. Hopf,et al.  Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing , 2012, Cell.

[85]  Peng Wang,et al.  Assembly of bacterial inner membrane proteins. , 2011, Annual review of biochemistry.

[86]  K. V. van Wijk,et al.  Characterization of the consequences of YidC depletion on the inner membrane proteome of E. coli using 2D blue native/SDS-PAGE. , 2011, Journal of molecular biology.

[87]  Yoshiki Tanaka,et al.  Structural basis of Sec-independent membrane protein insertion by YidC , 2014, Nature.

[88]  Alan Brown,et al.  Structure of the large ribosomal subunit from human mitochondria , 2014, Science.

[89]  Stephan Wickles,et al.  Structural basis of highly conserved ribosome recycling in eukaryotes and archaea , 2012, Nature.

[90]  Florencio Pazos,et al.  Practical aspects of protein co-evolution , 2014, Front. Cell Dev. Biol..

[91]  Thomas A. Hopf,et al.  Sequence co-evolution gives 3D contacts and structures of protein complexes , 2014, eLife.

[92]  A. Kuhn,et al.  YidC as an essential and multifunctional component in membrane protein assembly. , 2007, International review of cytology.

[93]  M. van der Laan,et al.  A conserved function of YidC in the biogenesis of respiratory chain complexes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[94]  G. Phillips,et al.  Isolation of Cold-Sensitive yidC Mutants Provides Insights into the Substrate Profile of the YidC Insertase and the Importance of Transmembrane 3 in YidC Function , 2007, Journal of bacteriology.

[95]  Bernd Bukau,et al.  The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins , 2009, Nature Structural &Molecular Biology.

[96]  A. Driessen,et al.  Elucidating the native architecture of the YidC: ribosome complex. , 2013, Journal of molecular biology.

[97]  G. Heijne,et al.  Saccharomyces cerevisiae mitochondria lack a bacterial‐type Sec machinery , 1996, Protein science : a publication of the Protein Society.

[98]  Ross E Dalbey,et al.  The membrane insertase YidC. , 2014, Biochimica et biophysica acta.

[99]  G. von Heijne,et al.  Interface connections of a transmembrane voltage sensor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  A. Kuhn,et al.  The Role of the Strictly Conserved Positively Charged Residue Differs among the Gram-positive, Gram-negative, and Chloroplast YidC Homologs* , 2014, The Journal of Biological Chemistry.

[101]  D. Kriegman,et al.  Automatic particle selection: results of a comparative study. , 2004, Journal of structural biology.

[102]  Martin B Ulmschneider,et al.  Properties of integral membrane protein structures: Derivation of an implicit membrane potential , 2005, Proteins.

[103]  Zhengshuang Shi,et al.  Cation-pi interaction in model alpha-helical peptides. , 2002, Journal of the American Chemical Society.

[104]  D. Langosch,et al.  A Heptad Motif of Leucine Residues Found in Membrane Proteins Can Drive Self-assembly of Artificial Transmembrane Segments* , 1999, The Journal of Biological Chemistry.

[105]  Stephan Wickles,et al.  Structural characterization of a eukaryotic chaperone—the ribosome-associated complex , 2012, Nature Structural &Molecular Biology.

[106]  A. Kuhn,et al.  Escherichia coli YidC is a membrane insertase for Sec‐independent proteins , 2004, The EMBO journal.

[107]  S. High,et al.  Delivering proteins for export from the cytosol , 2009, Nature Reviews Molecular Cell Biology.

[108]  H. Kaback,et al.  Role of YidC in folding of polytopic membrane proteins , 2004, The Journal of cell biology.

[109]  Ruedi Aebersold,et al.  The complete structure of the large subunit of the mammalian mitochondrial ribosome , 2014, Nature.

[110]  Stefan Günther,et al.  Hydrogen-bonding and packing features of membrane proteins: functional implications. , 2008, Biophysical journal.

[111]  Karen Hecht,et al.  Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment. , 2007, Biochemistry.

[112]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[113]  Trey Ideker,et al.  Coevolution within a transcriptional network by compensatory trans and cis mutations. , 2010, Genome research.

[114]  W. Kühlbrandt,et al.  Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. , 2005, Journal of molecular biology.

[115]  S. Iwata,et al.  Structure and Mechanism of the Lactose Permease of Escherichia coli , 2003, Science.

[116]  A. Herskovits,et al.  New prospects in studying the bacterial signal recognition particle pathway , 2000, Molecular microbiology.

[117]  J. Frank,et al.  Three‐dimensional reconstruction from a single‐exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli , 1987, Journal of microscopy.

[118]  Joachim Frank,et al.  A clarification of the terms used in comparing semi-automated particle selection algorithms in cryo-EM. , 2011, Journal of structural biology.

[119]  S. White,et al.  Hydrogen bond dynamics in membrane protein function. , 2012, Biochimica et biophysica acta.

[120]  Thomas A. Hopf,et al.  Protein structure prediction from sequence variation , 2012, Nature Biotechnology.

[121]  F. Drepper,et al.  YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. , 2015, The Journal of Biological Chemistry.

[122]  Alan Brown,et al.  Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014, Science.

[123]  S. White,et al.  How Membranes Shape Protein Structure* , 2001, The Journal of Biological Chemistry.

[124]  M. van der Laan,et al.  Reconstitution of Sec‐dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG‐dependent manner , 2001, EMBO reports.

[125]  R. Stuart,et al.  The Alb3/Oxa1/YidC protein family: membrane-localized chaperones facilitating membrane protein insertion? , 2003, Trends in cell biology.

[126]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[127]  T. Samuelsson,et al.  YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly , 2001, FEBS letters.

[128]  Shu Yang,et al.  Correlated evolution of transcription factors and their binding sites , 2011, Bioinform..

[129]  D. Baker,et al.  Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information , 2014, eLife.

[130]  C. D. de Koster,et al.  Detection of cross‐links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins , 2008, FEBS letters.

[131]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[132]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[133]  Klaus Schulten,et al.  Cryo–EM structure of the ribosome–SecYE complex in the membrane environment , 2011, Nature Structural &Molecular Biology.

[134]  K. Hristova,et al.  A Look at Arginine in Membranes , 2010, The Journal of Membrane Biology.

[135]  David A. Lee,et al.  New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures , 2012, Nucleic Acids Res..

[136]  J. Herrmann The bacterial membrane insertase YidC is a functional monomer and binds ribosomes in a nascent chain-dependent manner. , 2013, Journal of molecular biology.

[137]  Jin Pan,et al.  Codon usage and coevolution of the large and small subunits of ribulose‐1,5‐bisphosphate carboxylase/oxygenase , 2013 .

[138]  R. Stuart,et al.  Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C‐terminal region of Oxa1 , 2003, The EMBO journal.

[139]  A. Driessen,et al.  Monitoring the activity of single translocons. , 2013, Journal of molecular biology.

[140]  T. Rapoport,et al.  Mechanisms of Sec61/SecY-mediated protein translocation across membranes. , 2012, Annual review of biophysics.

[141]  Virgil L. Woods,et al.  Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins , 2008, Nature.

[142]  Wen-Lian Hsu,et al.  Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices , 2013, BMC Bioinformatics.

[143]  U. Truyen,et al.  [Electron microscopy]. , 1997, Tierarztliche Praxis.

[144]  D. Frishman,et al.  Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i. , 2010, Journal of molecular biology.

[145]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[146]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[147]  M. Paetzel,et al.  Crystal Structure of the Major Periplasmic Domain of the Bacterial Membrane Protein Assembly Facilitator YidC* , 2008, Journal of Biological Chemistry.

[148]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[149]  T. Rapoport,et al.  Structural insight into the protein translocation channel. , 2004, Current opinion in structural biology.

[150]  A. Valencia,et al.  Emerging methods in protein co-evolution , 2013, Nature Reviews Genetics.

[151]  Jie Liang,et al.  Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers , 2002, Proteins.