Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps

The visual cortex has a laminar organization whose circuits form functional columns in cortical maps. How this laminar architecture supports visual percepts is not well understood. A neural model proposes how the laminar circuits of V1 and V2 generate perceptual groupings that maintain sensitivity to the contrasts and spatial organization of scenic cues. The model can decisively choose which groupings cohere and survive, even while balanced excitatory and inhibitory interactions preserve contrast-sensitive measures of local boundary likelihood or strength. In the model, excitatory inputs from lateral geniculate nucleus (LGN) activate layers 4 and 6 of V1. Layer 6 activates an on-center off-surround network of inputs to layer 4. Together these layer 4 inputs preserve analog sensitivity to LGN input contrasts. Layer 4 cells excite pyramidal cells in layer 2/3, which activate monosynaptic long-range horizontal excitatory connections between layer 2/3 pyramidal cells, and short-range disynaptic inhibitory connections mediated by smooth stellate cells. These interactions support inward perceptual grouping between two or more boundary inducers, but not outward grouping from a single inducer. These boundary signals feed back to layer 4 via the layer 6-to-4 on-center off-surround network. This folded feedback joins cells in different layers into functional columns while selecting winning groupings. Layer 6 in V1 also sends top-down signals to LGN using an on-center off-surround network, which suppresses LGN cells that do not receive feedback, while selecting, enhancing, and synchronizing activity of those that do. The model is used to simulate psychophysical and neurophysiological data about perceptual grouping, including various Gestalt grouping laws.

[1]  S. Grossberg,et al.  Self-Organization of Binocular Disparity Tuning by Reciprocal Corticogeniculate Interactions , 1998, Journal of Cognitive Neuroscience.

[2]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[3]  U. Polat,et al.  The architecture of perceptual spatial interactions , 1994, Vision Research.

[4]  G. Blasdel,et al.  Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[6]  Mark W. Cannon,et al.  Spatial interactions in apparent contrast: Individual differences in enhancement and suppression effects , 1993, Vision Research.

[7]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[8]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  E. Degreef,et al.  Trends in mathematical psychology , 1984 .

[10]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[11]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[12]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[13]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[14]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[15]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997, Psychological review.

[16]  P. Kellman,et al.  Strength of visual interpolation depends on the ratio of physically specified to total edge length , 1992, Perception & psychophysics.

[17]  S. Grossberg,et al.  Cortical computation of stereo disparity , 1998, Vision Research.

[18]  D Ferster,et al.  Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico‐geniculate cells. , 1985, The Journal of physiology.

[19]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[20]  S Grossberg,et al.  Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance , 1984, Perception & Psychophysics.

[21]  A. Hodgkin The conduction of the nervous impulse , 1964 .

[22]  Michael Bach,et al.  The abutting grating illusion , 1996, Vision Research.

[23]  L. Optican,et al.  Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons , 1994, Visual Neuroscience.

[24]  S. Grossberg Cortical dynamics of three-dimensional form, color, and brightness perception: I. Monocular theory , 1987, Perception & psychophysics.

[25]  Gregory W. Lesher,et al.  Illusory contours: Toward a neurally based perceptual theory , 1995, Psychonomic bulletin & review.

[26]  C. Gilbert,et al.  Generation of end-inhibition in the visual cortex via interlaminar connections , 1986, Nature.

[27]  K. Koffka Principles Of Gestalt Psychology , 1936 .

[28]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[30]  M Stemmler,et al.  Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. , 1995, Science.

[31]  S. Grossberg How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. , 1999, Spatial vision.

[32]  R. Kalil,et al.  Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat , 1989, The Journal of comparative neurology.

[33]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  T. Wiesel,et al.  Pharmacological analysis of cortical circuitry , 1989, Trends in Neurosciences.

[35]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[36]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[37]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[39]  S. Grossberg How does a brain build a cognitive code , 1980 .

[40]  V S Ramachandran,et al.  Global Grouping Overrides Point-to-Point Disparities , 1976, Perception.

[41]  Stephen Grossberg,et al.  Contour Enhancement, Short Term Memory, and Constancies in Reverberating Neural Networks , 1973 .

[42]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[43]  D. Pollen,et al.  Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat's visual cortex , 1992, Vision Research.

[44]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  D H Hubel,et al.  Brain mechanisms of vision. , 1979, Scientific American.

[46]  Ennio Mingolla,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985 .

[47]  J. Kennedy Illusory Contours and the Ends of Lines , 1978, Perception.

[48]  P. C. Murphy,et al.  Corticofugal feedback influences the generation of length tuning in the visual pathway , 1987, Nature.

[49]  Alan N. Gove,et al.  Brightness perception, illusory contours, and corticogeniculate feedback , 1995, Visual Neuroscience.

[50]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[51]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[52]  A. Sillito Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex , 1977, The Journal of physiology.

[53]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[56]  R. Kalil,et al.  Morphology of single, physiologically identified retinogeniculate Y‐cell axons in the cat following damage to visual cortex at birth , 1989, The Journal of comparative neurology.

[57]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[58]  Stephen Grossberg,et al.  A Neural Network Model for the Development . . . , 1998 .

[59]  Ennio Mingolla,et al.  The role of edges and line-ends in illusory contour formation , 1993, Vision Research.

[60]  P. C. Murphy,et al.  Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  P. O. Bishop,et al.  Hypercomplex and simple/complex cell classifications in cat striate cortex. , 1978, Journal of neurophysiology.

[62]  J. Donoghue,et al.  Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. , 1994, Journal of neurophysiology.

[63]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Heiko Neumann,et al.  Mechanisms of Neural Architecture for Visual Contrast and Brightness Perception , 1996, Neural Networks.

[65]  Heiko Neumann,et al.  Recurrent V1–V2 interaction in early visual boundary processing , 1999, Biological Cybernetics.

[66]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[67]  S. Grossberg,et al.  Cortical Dynamics of 3-D Surface Perception: Binocular and Half-Occluded Scenic Images , 1995 .

[68]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[69]  W. D. Ross,et al.  Visual brain and visual perception: how does the cortex do perceptual grouping? , 1997, Trends in Neurosciences.

[70]  S Grossberg,et al.  3-D vision and figure-ground separation by visual cortex , 2010, Perception & psychophysics.

[71]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[72]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[73]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[74]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[75]  W Singer,et al.  The Perceptual Grouping Criterion of Colinearity is Reflected by Anisotropies of Connections in the Primary Visual Cortex , 1997, The European journal of neuroscience.

[76]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[77]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[78]  A. Rosenfeld,et al.  A Theory of Textural Segmentation , 1983 .

[79]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[80]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[82]  Azriel Rosenfeld,et al.  Human and Machine Vision , 1983 .

[83]  Stephen Grossberg,et al.  A neural network model for the development of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance , 1998, Neural Networks.

[84]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  S. Grossberg Outline of A Theory of Brightness, Color, and form Perception , 1984 .

[86]  S Grossberg,et al.  Cortical dynamics of three-dimensional form, color, and brightness perception: II. Binocular theory , 1988, Perception & psychophysics.

[87]  R B Tootell,et al.  Spatial frequency tuning of single units in macaque supragranular striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.