A haptic-rendering technique based on hybrid surface representation

A novel haptic rendering technique using a hybrid surface representation addresses conventional limitations in haptic displays. A haptic interface lets the user touch, explore, paint, and manipulate virtual 3D models in a natural way using a haptic display device. A haptic rendering algorithm must generate a force field to simulate the presence of these virtual objects and their surface properties (such as friction and texture), or to guide the user along a specific trajectory. We can roughly classify haptic rendering algorithms according to the surface representation they use: geometric haptic algorithms for surface data, and volumetric haptic algorithms based on volumetric data including implicit surface representation. Our algorithm is based on a hybrid surface representation - a combination of geometric (B-rep) and implicit (V-rep) surface representations for a given 3D object, which takes advantage of both surface representations.

[1]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[2]  Ken Perlin,et al.  An image synthesizer , 1988 .

[3]  Ronald N. Perry,et al.  Kizamu: a system for sculpting digital characters , 2001, SIGGRAPH.

[4]  Oussama Khatib,et al.  The haptic display of complex graphical environments , 1997, SIGGRAPH.

[5]  Ming C. Lin,et al.  inTouch: interactive multiresolution modeling and 3D painting with a haptic interface , 2000, Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048).

[6]  Susan J. Lederman,et al.  Computational haptics: the sandpaper system for synthesizing texture for a force-feedback display , 1995 .

[7]  Luiz Velho,et al.  A unified approach for hierarchical adaptive tesselation of surfaces , 1999, TOGS.

[8]  John F. Hughes,et al.  Sculpting: an interactive volumetric modeling technique , 1991, SIGGRAPH.

[9]  J. Edward Colgate,et al.  Haptic interfaces for virtual environment and teleoperator systems , 1995 .

[10]  Cagatay Basdogan,et al.  Efficient Point-Based Rendering Techniques for Haptic Display of Virtual Objects , 1999, Presence.

[11]  Niels Jørgen Christensen,et al.  Volume sculpting using the level-set method , 2002, Proceedings SMI. Shape Modeling International 2002.

[12]  John Kenneth Salisbury,et al.  A constraint-based god-object method for haptic display , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[13]  M. D. R. Minsky,et al.  Computational Haptics : The Sandpaper System for Synthesizing Texture for with a Force-Feedback Haptic Display , 1995 .

[14]  Elaine Cohen,et al.  Painting textures with a haptic interface , 1999, Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).

[15]  HoChih-Hao,et al.  Efficient Point-Based Rendering Techniques for Haptic Display of Virtual Objects , 1999 .

[16]  J. Andreas Bærentzen,et al.  Octree–based Volume Sculpting , 1998 .

[17]  Hong Qin,et al.  Virtual clay: a real-time sculpting system with haptic toolkits , 2001, I3D '01.

[18]  Gaurav S. Sukhatme,et al.  An implicit-based haptic rendering technique , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  James J. Troy,et al.  Six degree-of-freedom haptic rendering using voxel sampling , 1999, SIGGRAPH.

[20]  Gaurav S. Sukhatme,et al.  Haptic editing of decoration and material properties , 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings..

[21]  Hong Qin,et al.  Haptic sculpting of volumetric implicit functions , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[22]  Ricardo S. Avila,et al.  A haptic interaction method for volume visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[23]  K. Salisbury,et al.  Haptic Rendering of Surfaces Defined by Implicit Functions , 1997, Dynamic Systems and Control.