Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex

Simple cells in the primary visual cortex often appear to compute a weighted sum of the light intensity distribution of the visual stimuli that fall on their receptive fields. A linear model of these cells has the advantage of simplicity and captures a number of basic aspects of cell function. It, however, fails to account for important response nonlinearities, such as the decrease in response gain and latency observed at high contrasts and the effects of masking by stimuli that fail to elicit responses when presented alone. To account for these nonlinearities we have proposed a normalization model, which extends the linear model to include mutual shunting inhibition among a large number of cortical cells. Shunting inhibition is divisive, and its effect in the model is to normalize the linear responses by a measure of stimulus energy. To test this model we performed extracellular recordings of simple cells in the primary visual cortex of anesthetized macaques. We presented large stimulus sets consisting of (1) drifting gratings of various orientations and spatiotemporal frequencies; (2) plaids composed of two drifting gratings; and (3) gratings masked by full-screen spatiotemporal white noise. We derived expressions for the model predictions and fitted them to the physiological data. Our results support the normalization model, which accounts for both the linear and the nonlinear properties of the cells. An alternative model, in which the linear responses are subject to a compressive nonlinearity, did not perform nearly as well.

[1]  B. Katz,et al.  The effect of inhibitory nerve impulses on a crustacean muscle fibre , 1953, The Journal of physiology.

[2]  J. Eccles,et al.  The inhibitory suppression of reflex discharges from motoneurones , 1955, The Journal of physiology.

[3]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[4]  M M Sondhi,et al.  Model for visual luminance discrimination and flicker detection. , 1968, Journal of the Optical Society of America.

[5]  K. Krnjević,et al.  Cortical inhibition and gamma-aminobutyric acid. , 1969, Experimental brain research.

[6]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[7]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[8]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[9]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[10]  A. Hodgkin,et al.  Changes in time scale and sensitivity in turtle photoreceptors , 1974, The Journal of physiology.

[11]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[12]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[13]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[14]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[15]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[16]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[17]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[18]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[19]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[20]  A. Dean The relationship between response amplitude and contrast for cat striate cortical neurones. , 1981, The Journal of physiology.

[21]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[22]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[23]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[24]  R. Holub,et al.  Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. , 1981, Journal of neurophysiology.

[25]  D. Mackay,et al.  Modulatory influences of moving textured backgrounds on responsiveness of simple cells in feline striate cortex , 1981, The Journal of physiology.

[26]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[27]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[28]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[30]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[31]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[32]  K. D. De Valois,et al.  Spatial‐frequency‐specific inhibition in cat striate cortex cells. , 1983, The Journal of physiology.

[33]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[35]  T. Poggio,et al.  Biophysics of Computation: Neurons, Synapses and Membranes , 1984 .

[36]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[37]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[38]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[39]  G. Orban,et al.  Velocity selectivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: a comparison with cortical areas 17 and 18. , 1985, Journal of neurophysiology.

[40]  N. Kawabata,et al.  Neural interactions of two moving patterns in the direction and orientation domain in the complex cells of cat's visual cortex , 1985, Vision Research.

[41]  D. G. Albrecht,et al.  Periodicity of striate-cortex-cell receptive fields. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[42]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[43]  I. Ohzawa,et al.  The binocular organization of complex cells in the cat's visual cortex. , 1986, Journal of neurophysiology.

[44]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[45]  I. Ohzawa,et al.  The binocular organization of simple cells in the cat's visual cortex. , 1986, Journal of neurophysiology.

[46]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[47]  I. Ohzawa,et al.  Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. , 1987, Journal of neurophysiology.

[48]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[49]  G. Orban,et al.  The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. , 1987, Journal of neurophysiology.

[50]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[52]  S. Grossberg,et al.  Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena , 1988, Perception & psychophysics.

[53]  H. Tamura,et al.  Inhibition contributes to orientation selectivity in visual cortex of cat , 1988, Nature.

[54]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain , 1989, Visual Neuroscience.

[55]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[56]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[57]  P. Lennie,et al.  Contrast adaptation in striate cortex of macaque , 1989, Vision Research.

[58]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[59]  J. Movshon,et al.  Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. , 1990, Journal of neurophysiology.

[60]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[61]  A. B. Bonds,et al.  Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex , 1991, Vision Research.

[62]  S. Nelson,et al.  Temporal interactions in the cat visual system. I. Orientation- selective suppression in the visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[64]  C. Koch,et al.  Synaptic Background Activity Influences Spatiotemporal Integration in Single Pyramidal Cells. , 1991, The Biological bulletin.

[65]  R. Born,et al.  Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[67]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[68]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[69]  D. Whitteridge,et al.  Mechanisms of inhibition in cat visual cortex. , 1991, The Journal of physiology.

[70]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[71]  D. Heeger Nonlinear model of neural responses in cat visual cortex. , 1991 .

[72]  C. Gray,et al.  Visually evoked oscillations of membrane potential in cells of cat visual cortex. , 1992, Science.

[73]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Shapley,et al.  Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex , 1992, Visual Neuroscience.

[75]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[77]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[78]  S. G. Lisberger,et al.  Motor learning in a recurrent network model based on the vestibulo–ocular reflex , 1992, Nature.

[79]  B. Knight,et al.  Contrast gain control in the primate retina: P cells are not X-like, some M cells are , 1992, Visual Neuroscience.

[80]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[81]  D. Pollen,et al.  Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat's visual cortex , 1992, Vision Research.

[82]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[83]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[84]  U. Eysel,et al.  Functional and Structural Topography of Horizontal Inhibitory Connections in Cat Visual Cortex , 1993, The European journal of neuroscience.

[85]  NORMALIZATION WITH SHUNTING INHIBITION EXPLAINS SIMPLE CELL RESPONSE PHASE AND INTEGRATION TIME , 1993 .

[86]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[87]  C. Li,et al.  Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties. , 1994, Vision research.

[88]  Colin Blakemore,et al.  Interocular control of neuronal responsiveness in cat visual cortex , 1994, Nature.

[89]  J. Maunsell,et al.  Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[91]  T. Bonhoeffer,et al.  Relationship Between Lateral Inhibitory Connections and the Topography of the Orientation Map in Cat Visual Cortex , 1994, The European journal of neuroscience.

[92]  Joel Pokorny,et al.  Responses to pulses and sinusoids in macaque ganglion cells , 1994, Vision Research.

[93]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[94]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[95]  J. B. Levitt,et al.  Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections , 1994, Visual Neuroscience.

[96]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[97]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[99]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[101]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[102]  C. Blakemore,et al.  Interocular suppression in the primary visual cortex: a possible neural basis of binocular rivalry , 1995, Vision Research.

[103]  D. G. Albrecht Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions , 1995, Visual Neuroscience.

[104]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[105]  Matteo Carandini,et al.  Summation and Division in V1 Simple Cells , 1995 .

[106]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[107]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[108]  J. Movshon,et al.  Spike train encoding by regular-spiking cells of the visual cortex. , 1996, Journal of neurophysiology.

[109]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Y. Frégnac,et al.  Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex , 1996, Journal of Physiology-Paris.

[112]  G. Orban,et al.  Model circuit of spiking neurons generating directional selectivity in simple cells. , 1996, Journal of neurophysiology.

[113]  R. Shapley,et al.  Temporal-frequency selectivity in monkey visual cortex , 1996, Visual Neuroscience.

[114]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, II: Nonlinear dynamics , 1997, Visual Neuroscience.

[115]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[116]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, I: Linear dynamics , 1997, Visual Neuroscience.

[117]  D. Heeger,et al.  Modeling the Apparent Frequency-specific Suppression in Simple Cell Responses , 1997, Vision Research.

[118]  D. Heeger,et al.  Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[119]  L. P. O'Keefe,et al.  Adaptation to contingencies in macaque primary visual cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[120]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[121]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[122]  Matteo Carandini,et al.  Intracellular correlates of adaptation and masking in simple cells , 1997 .

[123]  D. Heeger,et al.  Contrast normalization and a linear model for the directional selectivity of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[124]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[125]  J. Anthony Movshon,et al.  Linearity and gain control in V1 simple cells , 1999 .