A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation.

Mathematical modeling of soft robots is complicated by the description of the continuously deformable three-dimensional shape that they assume when subjected to external loads. In this article we present the deformation space formulation for soft robots dynamics, developed using a finite element approach. Starting from the Cosserat rod theory formulated on a Lie group, we derive a discrete model using a helicoidal shape function for the spatial discretization and a geometric scheme for the time integration of the robot shape configuration. The main motivation behind this work is the derivation of accurate and computational efficient models for soft robots. The model takes into account bending, torsion, shear, and axial deformations due to general external loading conditions. It is validated through analytic and experimental benchmark. The results demonstrate that the model matches experimental positions with errors <1% of the robot length. The computer implementation of the model results in SimSOFT, a dynamic simulation environment for design, analysis, and control of soft robots.

[1]  D. Caleb Rucker,et al.  Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading , 2011, IEEE Transactions on Robotics.

[2]  Bruno Siciliano,et al.  From Differential Geometry of Curves to Helical Kinematics of Continuum Robots Using Exponential Mapping , 2018, ARK.

[3]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[4]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[5]  Cagdas D. Onal,et al.  Design and control of a soft and continuously deformable 2D robotic manipulation system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[6]  J. J. Traybar,et al.  An Experimental Study of the Nonlinear Stiffness of a Rotor Blade Undergoing Flap, Lag and Twist Deformations , 1975 .

[7]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[8]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[9]  Gregory S. Chirikjian,et al.  Hyper-redundant manipulator dynamics: a continuum approximation , 1994, Adv. Robotics.

[10]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[11]  L. Shampine Solving Hyperbolic PDEs in MATLAB , 2005 .

[12]  Matteo Cianchetti,et al.  Dynamic Model of a Multibending Soft Robot Arm Driven by Cables , 2014, IEEE Transactions on Robotics.

[13]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[14]  Daniela Rus,et al.  Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[15]  Hershel Markovitz,et al.  Theory of viscoelasticity. An introduction , 1984 .

[16]  S. Antman Nonlinear problems of elasticity , 1994 .

[17]  D. Caleb Rucker,et al.  A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots , 2010, IEEE Transactions on Robotics.

[18]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[19]  Tudor S. Ratiu,et al.  Discrete variational Lie group formulation of geometrically exact beam dynamics , 2015, Numerische Mathematik.

[20]  Gregory S. Chirikjian,et al.  Snake-Like and Continuum Robots , 2016, Springer Handbook of Robotics, 2nd Ed..

[21]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[22]  Andreas Müller,et al.  Lie-group integration method for constrained multibody systems in state space , 2011 .

[23]  C. Majidi Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[24]  Stephen A. Morin,et al.  Soft Robotics: Review of Fluid‐Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human‐Robot Interaction   , 2017 .

[25]  Radhika Nagpal,et al.  Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation , 2014, Bioinspiration & biomimetics.

[26]  Oliver Brock,et al.  A novel type of compliant and underactuated robotic hand for dexterous grasping , 2016, Int. J. Robotics Res..

[27]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[28]  Frédéric Boyer,et al.  Macro-continuous computed torque algorithm for a three-dimensional eel-like robot , 2006, IEEE Transactions on Robotics.

[29]  J. M. Selig,et al.  A Screw Theory of Timoshenko Beams , 2009 .

[30]  Cosimo Della Santina,et al.  Using Nonlinear Normal Modes for Execution of Efficient Cyclic Motions in Soft Robots , 2018, ArXiv.

[31]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[32]  Lakmal D. Seneviratne,et al.  Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics , 2017, ArXiv.

[33]  Olivier Bruls,et al.  On the Use of Lie Group Time Integrators in Multibody Dynamics , 2010 .

[34]  Peter Kazanzides,et al.  Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat , 2009, Int. J. Robotics Res..

[35]  Jonghoon Park,et al.  Geometric integration on Euclidean group with application to articulated multibody systems , 2005, IEEE Transactions on Robotics.

[36]  Cosimo Della Santina,et al.  Dexterity augmentation on a synergistic hand: The Pisa/IIT SoftHand+ , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[37]  Bruno Siciliano,et al.  Analytic solutions for the static equilibrium configurations of externally loaded cantilever soft robotic arms , 2018, 2018 IEEE International Conference on Soft Robotics (RoboSoft).

[38]  Cosimo Della Santina,et al.  Dynamic control of soft robots interacting with the environment , 2018, 2018 IEEE International Conference on Soft Robotics (RoboSoft).

[39]  LipsonHod,et al.  Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .

[40]  Heinrich M. Jaeger,et al.  A Positive Pressure Universal Gripper Based on the Jamming of Granular Material , 2012, IEEE Transactions on Robotics.

[41]  M. Borri,et al.  An intrinsic beam model based on a helicoidal approximation—Part I: Formulation , 1994 .

[42]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[43]  Matteo Bianchi,et al.  Controlling Soft Robots: Balancing Feedback and Feedforward Elements , 2017, IEEE Robotics & Automation Magazine.

[44]  Howie Choset,et al.  Continuum Robots for Medical Applications: A Survey , 2015, IEEE Transactions on Robotics.

[45]  M. Borri,et al.  An intrinsic beam model based on a helicoidal approximation—Part II: Linearization and finite element implementation , 1994 .

[46]  Jason Rife,et al.  Modeling locomotion of a soft-bodied arthropod using inverse dynamics , 2011, Bioinspiration & biomimetics.

[47]  Johannes F. Broenink,et al.  Simulation, Modeling, and Programming for Autonomous Robots , 2014, Lecture Notes in Computer Science.

[48]  Hod Lipson,et al.  Automatic Design and Manufacture of Soft Robots , 2012, IEEE Transactions on Robotics.

[49]  Robert J. Wood,et al.  Soft robotic glove for combined assistance and at-home rehabilitation , 2015, Robotics Auton. Syst..

[50]  Kai Xu,et al.  Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals , 2010 .

[51]  Bruno Siciliano,et al.  A nonlinear finite element formalism for modelling flexible and soft manipulators , 2016, 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR).

[52]  Ian D. Walker,et al.  Closed-Form Inverse Kinematics for Continuum Manipulators , 2009, Adv. Robotics.

[53]  Cecilia Laschi,et al.  Control Strategies for Soft Robotic Manipulators: A Survey. , 2018, Soft robotics.

[54]  Bruno Siciliano,et al.  Screw-based dynamics of a serial/parallel flexible manipulator for DEMO blanket remote handling , 2019 .

[55]  Olivier Bruls,et al.  Geometrically exact beam finite element formulated on the special Euclidean group SE(3) , 2014 .

[56]  M. Valvo,et al.  A Minimally Invasive Tendril Robot for In-Space Inspection , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[57]  Olivier Bruls,et al.  Lie group generalized-α time integration of constrained flexible multibody systems , 2012 .

[58]  Christopher D. Rahn,et al.  Geometrically Exact Models for Soft Robotic Manipulators , 2008, IEEE Transactions on Robotics.