Planning the Shortest Path in Cluttered Environments: A Review and a Planar Convex Hull-Based Approach

[1]  Cody Harrison Fleming,et al.  An Exact Geometry–Based Algorithm for Path Planning , 2018, Int. J. Appl. Math. Comput. Sci..

[2]  Charles W. Warren,et al.  Global path planning using artificial potential fields , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[3]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[4]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[5]  Rosli Omar,et al.  Optimal Path Planning using Equilateral Spaces Oriented Visibility Graph Method , 2017 .

[6]  S. N. Maheshwari,et al.  Efficiently Constructing the Visibility Graph of a Simple Polygon with Obstacles , 2000, SIAM J. Comput..

[7]  P. Raja,et al.  Optimal path planning of mobile robots: A review , 2012 .

[8]  Yingchong Ma,et al.  Cooperative path planning for mobile robots based on visibility graph , 2013, Proceedings of the 32nd Chinese Control Conference.

[9]  Wei Chen,et al.  GAPRUS—genetic algorithms based pipe routing using tessellated objects , 1999 .

[10]  Milan Simic,et al.  Sampling-Based Robot Motion Planning: A Review , 2014, IEEE Access.

[11]  Kirsten Matheus Automotive Ethernet , 2014 .

[12]  M. Doğan,et al.  Two-stage Shortest Path Algorithm for Solving Optimal Obstacle Avoidance Problem , 2011 .

[13]  Guanghui Li,et al.  An efficient improved artificial potential field based regression search method for robot path planning , 2012, 2012 IEEE International Conference on Mechatronics and Automation.

[14]  Georges M. Fadel,et al.  Accuracy issues in CAD to RP translations , 1996 .

[15]  Emo WELZL,et al.  Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..

[16]  Alexander Zipf,et al.  Routing through open spaces – A performance comparison of algorithms , 2018, Geo spatial Inf. Sci..

[17]  James A. Storer,et al.  Shortest paths in the plane with polygonal obstacles , 1994, JACM.

[18]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[19]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[20]  Micha Sharir,et al.  Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..

[21]  Luis Moreno,et al.  Path Planning for Mobile Robot Navigation using Voronoi Diagram and Fast Marching , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Qiang Liu,et al.  A discrete particle swarm optimization algorithm for rectilinear branch pipe routing , 2011 .

[23]  K. Sridharan,et al.  An efficient algorithm to construct reduced visibility graph and its FPGA implementation , 2004, 17th International Conference on VLSI Design. Proceedings..

[24]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[25]  Leonidas J. Guibas,et al.  Visibility of disjoint polygons , 2005, Algorithmica.

[26]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  Huaping Liu,et al.  An improved ant colony algorithm for robot path planning , 2017, Soft Comput..

[28]  Bernard Faverjon,et al.  Obstacle avoidance using an octree in the configuration space of a manipulator , 1984, ICRA.

[29]  Shuzhi Sam Ge,et al.  New potential functions for mobile robot path planning , 2000, IEEE Trans. Robotics Autom..

[30]  Steven M. LaValle,et al.  A Simple, but NP-Hard, Motion Planning Problem , 2013, AAAI.

[31]  Maurice Pollack,et al.  SOLUTIONS OF THE SHORTEST-ROUTE PROBLEM-A REVIEW , 1960 .

[32]  Marina L. Gavrilova,et al.  Geometric algorithms for clearance based optimal path computation , 2007, GIS.

[33]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[34]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration for fast path planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[35]  Dinesh Manocha,et al.  An efficient retraction-based RRT planner , 2008, 2008 IEEE International Conference on Robotics and Automation.

[36]  L. Johanning,et al.  Offshore wind farm electrical cable layout optimization , 2015 .

[37]  Georges M. Fadel,et al.  A Geometric Path-Planning Algorithm in Cluttered Planar Environments Using Convex Hulls , 2018, Volume 2B: 44th Design Automation Conference.

[38]  Vo Thi Huyen Trang,et al.  Using modification of visibility-graph in solving the problem of finding shortest path for robot , 2017, 2017 International Siberian Conference on Control and Communications (SIBCON).

[39]  Robert X. Gao,et al.  Complex Housing: Modelling and Optimization Using an Improved Multi-Objective Simulated Annealing Algorithm , 2016, Design Automation Conference.

[40]  Maxim Likhachev,et al.  D*lite , 2002, AAAI/IAAI.

[41]  Chang Wook Ahn,et al.  A genetic algorithm for shortest path routing problem and the sizing of populations , 2002, IEEE Trans. Evol. Comput..

[42]  Pierre Feyzeau,et al.  Path planning: A 2013 survey , 2013, Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM).

[43]  Ross E. Swaney,et al.  Optimization of process plant layout with pipe routing , 2005, Comput. Chem. Eng..

[44]  Ellips Masehian,et al.  Classic and Heuristic Approaches in Robot Motion Planning A Chronological Review , 2007 .

[45]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[46]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[47]  Salah Sukkarieh,et al.  3D smooth path planning for a UAV in cluttered natural environments , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[49]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[50]  Tong Heng Lee,et al.  Application of evolutionary artificial potential field in robot soccer system , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[51]  Demin Xu,et al.  Constructing visibility graph and planning optimal path for inspection of 2D workspace , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[52]  Yu-Chi Chang,et al.  Finding Narrow Passages with Probabilistic Roadmaps: The Small-Step Retraction Method , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[54]  Tatiana Kalganova,et al.  Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space , 2008 .

[55]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[56]  Soonhung Han,et al.  A Design Expert System for Auto-Routing of Ship Pipes , 1999 .

[57]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[58]  Stephen M. Pollock,et al.  MINIMUM-TRAJECTORY PIPE ROUTING , 1974 .

[59]  Anita Graser Integrating Open Spaces into OpenStreetMap Routing Graphs for Realistic Crossing Behaviour in Pedestrian Navigation , 2016 .

[60]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[61]  Saroj Kumar Patel,et al.  Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation , 2011, Comput. Electr. Eng..

[62]  Jur P. van den Berg,et al.  The visibility-Voronoi complex and its applications , 2007, Comput. Geom..

[63]  David M. Mount,et al.  An output sensitive algorithm for computing visibility graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[64]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[65]  Shui-Nee Chow,et al.  Global Optimizations by Intermittent Diffusion , 2013 .

[66]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[67]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[68]  Leonidas J. Guibas,et al.  An O(n²) Shortest Path Algorithm for a Non-Rotating Convex Body , 1988, J. Algorithms.

[69]  Gene Eu Jan,et al.  An $\bm{O(n\log n)}$ Shortest Path Algorithm Based on Delaunay Triangulation , 2014, IEEE/ASME Transactions on Mechatronics.

[70]  Magnus Egerstedt,et al.  Shortest paths through 3-dimensional cluttered environments , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[71]  Yasar Ayaz,et al.  Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments , 2015, Robotics Auton. Syst..

[72]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[73]  Mark H. Overmars,et al.  A random approach to motion planning , 1992 .

[74]  Leonidas J. Guibas,et al.  Visibility-polygon search and euclidean shortest paths , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[75]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[76]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[77]  Guan-Chun Luh,et al.  An immunological approach to mobile robot reactive navigation , 2008, Appl. Soft Comput..

[78]  Hans Rohnert,et al.  Shortest Paths in the Plane with Convex Polygonal Obstacles , 1986, Inf. Process. Lett..

[79]  Emmanouil E. Zachariadis,et al.  A Guided Tabu Search for the Vehicle Routing Problem with two-dimensional loading constraints , 2009, Eur. J. Oper. Res..

[80]  Marina L. Gavrilova,et al.  Roadmap-Based Path Planning - Using the Voronoi Diagram for a Clearance-Based Shortest Path , 2008, IEEE Robotics & Automation Magazine.

[81]  M. M. Flood The Traveling-Salesman Problem , 1956 .

[82]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[83]  Osamu Takahashi,et al.  Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..

[84]  Han-Pang Huang,et al.  Dynamic visibility graph for path planning , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).