A new potential field-based algorithm for path planning

In this paper, the path-planning problem is considered. We introduce a new potential function for path planning that has the remarkable feature that it is free from any local minima in the free space irrespective of the number of obstacles in the configuration space. The only global minimum is the goal configuration whose region of attraction extends over the whole free space. We also propose a new method for path optimization using an expanding sphere that can be used with any potential or penalty function. Simulations using a point mobile robot and smooth obstacles are presented to demonstrate the qualities of the new potential function. Finally, practical considerations are also discussed for nonpoint robots

[1]  Robert B. Tilove,et al.  Local obstacle avoidance for mobile robots based on the method of artificial potentials , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[3]  Ashraf Elnagar,et al.  Heuristics for local path planning , 1993, IEEE Trans. Syst. Man Cybern..

[4]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[5]  Elmer Gilbert,et al.  Minimum time robot path planning in the presence of obstacles , 1985, 1985 24th IEEE Conference on Decision and Control.

[6]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[7]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[8]  Pradeep K. Khosla,et al.  Superquadric artificial potentials for obstacle avoidance and approach , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[9]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[10]  Kang G. Shin,et al.  Selection of near-minimum time geometric paths for robotic manipulators , 1986 .

[11]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[12]  Elmer Gilbert,et al.  The application of distance functions to the optimization of robot motion in the presence of obstacles , 1984, The 23rd IEEE Conference on Decision and Control.

[13]  Hanan Samet,et al.  A hierarchical strategy for path planning among moving obstacles [mobile robot] , 1989, IEEE Trans. Robotics Autom..

[14]  Pierre Tournassoud Motion planning for a mobile robot with a kinematic constraint , 1988, Geometry and Robotics.

[15]  Steven Dubowsky,et al.  Robot Path Planning with Obstacles, Actuator, Gripper, and Payload Constraints , 1989, Int. J. Robotics Res..

[16]  Narendra Ahuja,et al.  A potential field approach to path planning , 1992, IEEE Trans. Robotics Autom..

[17]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[18]  Daniel E. Koditschek,et al.  Exact robot navigation using cost functions: the case of distinct spherical boundaries in E/sup n/ , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[19]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[20]  Elmer G. Gilbert,et al.  Distance functions and their application to robot path planning in the presence of obstacles , 1985, IEEE J. Robotics Autom..

[21]  Kang G. Shin,et al.  Minimum-time path planning for robot arms and their dynamics , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  James E. Bobrow,et al.  Optimal Robot Path Planning Using the Minimum-Time Criterion , 2022 .

[23]  S. M. Udupa,et al.  Collision Detection and Avoidance in Computer Controlled Manipulators , 1977, IJCAI.

[24]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[25]  Zvi Shiller,et al.  Dynamic motion planning of autonomous vehicles , 1991, IEEE Trans. Robotics Autom..

[26]  King-Sun Fu,et al.  A hierarchical orthogonal space approach to three-dimensional path planning , 1986, IEEE J. Robotics Autom..

[27]  Johann Borenstein,et al.  High-speed obstacle avoidance for mobile robots , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[28]  Kostas J. Kyriakopoulos,et al.  An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments , 1993, Autom..

[29]  J. Y. S. Luh,et al.  Minimum distance collision-free path planning for industrial robots with a prismatic joint , 1984 .

[30]  P. Khosla,et al.  Artificial potentials with elliptical isopotential contours for obstacle avoidance , 1987, 26th IEEE Conference on Decision and Control.