Population-Level Neural Codes Are Robust to Single-Neuron Variability from a Multidimensional Coding Perspective.

Sensory neurons are often tuned to particular stimulus features, but their responses to repeated presentation of the same stimulus can vary over subsequent trials. This presents a problem for understanding the functioning of the brain, because downstream neuronal populations ought to construct accurate stimulus representations, even upon singular exposure. To study how trial-by-trial fluctuations (i.e., noise) in activity influence cortical representations of sensory input, we performed chronic calcium imaging of GCaMP6-expressing populations in mouse V1. We observed that high-dimensional response correlations, i.e., dependencies in activation strength among multiple neurons, can be used to predict single-trial, single-neuron noise. These multidimensional correlations are structured such that variability in the response of single neurons is relatively harmless to population representations of visual stimuli. We propose that multidimensional coding may represent a canonical principle of cortical circuits, explaining why the apparent noisiness of neuronal responses is compatible with accurate neural representations of stimulus features.

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  Jorrit Steven Montijn,et al.  Population coding in mouse visual cortex: response reliability and dissociability of stimulus tuning and noise correlation , 2014, Front. Comput. Neurosci..

[3]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[4]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[5]  Jennifer T Coull,et al.  Attentional effects of noradrenaline vary with arousal level: selective activation of thalamic pulvinar in humans , 2004, NeuroImage.

[6]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[7]  F. Rieke,et al.  Noise correlations improve response fidelity and stimulus encoding , 2010, Nature.

[8]  A. Pouget,et al.  Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations , 2004, Nature Neuroscience.

[9]  Rodrigo F. Salazar,et al.  Responses to natural scenes in cat V1. , 2003, Journal of neurophysiology.

[10]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[11]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[12]  A. P. Georgopoulos,et al.  Variability and Correlated Noise in the Discharge of Neurons in Motor and Parietal Areas of the Primate Cortex , 1998, The Journal of Neuroscience.

[13]  Martin Vinck,et al.  Arousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding , 2014, Neuron.

[14]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[15]  Christian K. Machens,et al.  Efficient codes and balanced networks , 2016, Nature Neuroscience.

[16]  Andreas Hierlemann,et al.  Visual coding with a population of direction-selective neurons. , 2015, Journal of neurophysiology.

[17]  H. Sompolinsky,et al.  Population coding in neuronal systems with correlated noise. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  D. Ringach Population coding under normalization , 2010, Vision Research.

[19]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[20]  N. Sigala,et al.  Dynamic Coding for Cognitive Control in Prefrontal Cortex , 2013, Neuron.

[21]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[22]  Rava Azeredo da Silveira,et al.  Structures of Neural Correlation and How They Favor Coding , 2016, Neuron.

[23]  D. Massart,et al.  The Mahalanobis distance , 2000 .

[24]  A. Pouget,et al.  Information-limiting correlations , 2014, Nature Neuroscience.

[25]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[26]  Hermann Riecke,et al.  Mechanisms of pattern decorrelation by recurrent neuronal circuits , 2010, Nature Neuroscience.

[27]  Demetris K. Roumis,et al.  Removable cranial windows for long-term imaging in awake mice , 2014, Nature Protocols.

[28]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[29]  M. Carandini,et al.  Cortical State Determines Global Variability and Correlations in Visual Cortex , 2015, The Journal of Neuroscience.

[30]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[31]  Alexander S. Ecker,et al.  The effect of noise correlations in populations of diversely tuned neurons , 2011 .

[32]  Alexandre Pouget,et al.  Origin of information-limiting noise correlations , 2015, Proceedings of the National Academy of Sciences.

[33]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[34]  Joonyeol Lee,et al.  A Normalization Model of Attentional Modulation of Single Unit Responses , 2009, PloS one.

[35]  Valentin Dragoi,et al.  Negative Correlations in Visual Cortical Networks. , 2016, Cerebral cortex.

[36]  Timothy D. Hanks,et al.  Probabilistic Population Codes for Bayesian Decision Making , 2008, Neuron.

[37]  M. A. Smith,et al.  Stimulus Dependence of Neuronal Correlation in Primary Visual Cortex of the Macaque , 2005, The Journal of Neuroscience.

[38]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[40]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[41]  Robin A. A. Ince,et al.  Neural Codes Formed by Small and Temporally Precise Populations in Auditory Cortex , 2013, The Journal of Neuroscience.

[42]  G. DeAngelis,et al.  How Can Single Sensory Neurons Predict Behavior? , 2015, Neuron.

[43]  Alexander S. Ecker,et al.  Population code in mouse V1 facilitates read-out of natural scenes through increased sparseness , 2014, Nature Neuroscience.

[44]  J. Bradshaw,et al.  Pupil Size as a Measure of Arousal during Information Processing , 1967, Nature.

[45]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[46]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[47]  F. Helmchen,et al.  Steady or changing? Long-term monitoring of neuronal population activity , 2013, Trends in Neurosciences.

[48]  Alexander Thiele,et al.  Attention-Induced Variance and Noise Correlation Reduction in Macaque V1 Is Mediated by NMDA Receptors , 2013, Neuron.

[49]  R. Yuste,et al.  Visual stimuli recruit intrinsically generated cortical ensembles , 2014, Proceedings of the National Academy of Sciences.

[50]  Cyriel M A Pennartz,et al.  In Vivo Two-Photon Ca2+ Imaging Reveals Selective Reward Effects on Stimulus-Specific Assemblies in Mouse Visual Cortex , 2013, The Journal of Neuroscience.

[51]  Matthias Bethge,et al.  Natural Image Coding in V1: How Much Use Is Orientation Selectivity? , 2008, PLoS Comput. Biol..

[52]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[53]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[54]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[55]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[56]  Valentin Dragoi,et al.  Correlated Variability in Laminar Cortical Circuits , 2012, Neuron.

[57]  John Duncan,et al.  Hierarchical coding for sequential task events in the monkey prefrontal cortex , 2008, Proceedings of the National Academy of Sciences.

[58]  Jorrit Steven Montijn,et al.  Divisive Normalization and Neuronal Oscillations in a Single Hierarchical Framework of Selective Visual Attention , 2012, Front. Neural Circuits.

[59]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[60]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[61]  Peter E. Latham,et al.  Optimal computation with attractor networks , 2003, Journal of Physiology-Paris.

[62]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[63]  Daeyeol Lee,et al.  Effects of noise correlations on information encoding and decoding. , 2006, Journal of neurophysiology.

[64]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[65]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[66]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.