Design, modeling and control of inherently compliant actuators with a special consideration on agonist-anthropomorphic configuration

Design, modeling and control of inherently compliant actuators with a special consideration on agonist- antagonist anthropomorphic configuration" The research aims at the design, modeling and control of inherently compliant actuators for anthropomorphic systems. The first part of the work focuses on the study of various existing designs and look for the possibility of alternative actuators other than the conventional electric motors. Special attention is given to elctroactive polymer based soft actuators which have good potential in future robotic applications. In parallel, a model of the actuator dynamics and the model-based controller (MPC and optimal control) have been synthesized for an anthropomorphic 7 Dofs arm actuated by antagonist-agonist pair of Pneumatic Artificial Muscles (PAMs) at each joint. Such model and controller is then integrated within the software environment developed by the team. Using the PAMs based anthropomorphic manipulator arm and the numerical simulator, tests are done in order to evaluate the potential of this actuator and compare with the human body capabilities.

[1]  R. Quinn,et al.  Modeling of braided pneumatic actuators for robotic control , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[2]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[3]  P. Souéres,et al.  Hybrid PVDF/PVDF-graft-PEGMA Membranes for Improved Interface Strength and Lifetime of PEDOT:PSS/PVDF/Ionic Liquid Actuators. , 2015, ACS applied materials & interfaces.

[4]  Nadia Naghavi,et al.  Nonlinear identification of IPMC actuators based on ANFIS–NARX paradigm , 2014 .

[5]  Darwin G. Caldwell,et al.  Characteristics and adaptive control of pneumatic muscle actuators for a robotic elbow , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  Cédric Plesse,et al.  In search of better electroactive polymer actuator materials: PPy versus PEDOT versus PEDOT–PPy composites , 2013 .

[7]  Gursel Alici,et al.  Feedback Control of Tri-layer Polymer Actuators to Improve Their Positioning Ability and Speed of Response , 2008 .

[8]  Mustapha Hamerlain,et al.  Improved Control Strategy of 2-Sliding Controls Applied to a Flexible Robot Arm , 2011, Adv. Robotics.

[9]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[10]  Dirk Lefeber,et al.  Pneumatic artificial muscles: Actuators for robotics and automation , 2002 .

[11]  Edwin Jager,et al.  Conjugated-Polymer Micro- and Milliactuators for Biological Applications , 2002 .

[12]  G. Hirzinger,et al.  A new variable stiffness design: Matching requirements of the next robot generation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[13]  Bram Vanderborght,et al.  The Pneumatic Biped “Lucy” Actuated with Pleated Pneumatic Artificial Muscles , 2005, Auton. Robots.

[14]  P. Wang,et al.  Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells. , 2014, ACS applied materials & interfaces.

[15]  Steen Skaarup,et al.  PEDOT and PPy conducting polymer bilayer and trilayer actuators , 2008 .

[16]  Antonio Bicchi,et al.  Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Tegoeh Tjahjowidodo,et al.  Control of a pneumatic artificial muscle (PAM) with model-based hysteresis compensation , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[18]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[19]  Nikolaos G. Tsagarakis,et al.  AwAS-II: A new Actuator with Adjustable Stiffness based on the novel principle of adaptable pivot point and variable lever ratio , 2011, 2011 IEEE International Conference on Robotics and Automation.

[20]  Dominiek Reynaerts,et al.  Pneumatic and hydraulic microactuators: a review , 2010 .

[21]  B. Tondu,et al.  McKibben artificial muscle can be in accordance with the Hill skeletal muscle model , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[22]  Patrick van der Smagt,et al.  Analysis and control of a rubbertuator arm , 1996, Biological Cybernetics.

[23]  Kam K. Leang,et al.  An IPMC-enabled bio-inspired bending/twisting fin for underwater applications , 2012 .

[24]  S. Hashimoto,et al.  Active Polymer Gel Actuators , 2010, International journal of molecular sciences.

[25]  A. Tustin Automatic Control , 1951, Nature.

[26]  G. Whitesides,et al.  Soft Machines That are Resistant to Puncture and That Self Seal , 2013, Advanced materials.

[27]  Bertrand Tondu,et al.  Modelling of the McKibben artificial muscle: A review , 2012 .

[28]  Gursel Alici,et al.  Intelligent Control of Electroactive Polymer Actuators Based on Fuzzy and Neurofuzzy Methodologies , 2014, IEEE/ASME Transactions on Mechatronics.

[29]  Emanuel Todorov,et al.  Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system , 2007, Int. J. Control.

[30]  Guo-Hua Feng,et al.  A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications. , 2014, Materials science & engineering. C, Materials for biological applications.

[31]  Bertrand Tondu,et al.  Second order sliding mode control for an anthropomorphic robot-arm driven with pneumatic artificial muscles , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[32]  Seyed M. Mirvakili,et al.  Niobium Nanowire Yarns and their Application as Artificial Muscles , 2013 .

[33]  Gary M. Bone,et al.  Sliding mode control of a pneumatic muscle actuator system with a PWM strategy , 2014 .

[34]  G.A. Medrano-Cerda,et al.  Braided pneumatic actuator control of a multi-jointed manipulator , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[35]  K. Asaka,et al.  Actuator properties of the complexes composed by carbon nanotube and ionic liquid: The effects of additives , 2009 .

[36]  Rashi Tiwari,et al.  The state of understanding of ionic polymer metal composite architecture: a review , 2011 .

[37]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[38]  Benjamin Gorissen,et al.  Flexible pneumatic twisting actuators and their application to tilting micromirrors , 2014 .

[39]  Darwin G. Caldwell,et al.  Control of pneumatic muscle actuators , 1995 .

[40]  S. John,et al.  Inversion-Based Feedforward Control of Polypyrrole Trilayer Bender Actuators , 2010, IEEE/ASME Transactions on Mechatronics.

[41]  Blake Hannaford,et al.  The anthroform biorobotic arm: A system for the study of spinal circuits , 1995, Annals of Biomedical Engineering.

[42]  Kazuhiko Kawamura,et al.  Dynamic pneumatic actuator model for a model-based torque controller , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[43]  Byungkyu Kim,et al.  A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators , 2005 .

[44]  Shigeki Sugano,et al.  Design and development of a new robot joint using a mechanical impedance adjuster , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[45]  Robert C. Bolles,et al.  Proceedings of the 4th international symposium on Robotics Research , 1988 .

[46]  Antonio Bicchi,et al.  Optimality principles in variable stiffness control: The VSA hammer , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Kyoung Kwan Ahn,et al.  Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network , 2006 .

[48]  Geoffrey M. Spinks,et al.  Comparative displacement study of bilayer actuators comprising of conducting polymers, fabricated from polypyrrole, poly(3,4- ethylenedioxythiophene) or poly(3,4-propylenedioxythiophene) , 2013 .

[49]  Ronald Lumia,et al.  Single active finger IPMC microgripper , 2015 .

[50]  Hiroaki Kobayashi,et al.  RESPONSE CHARACTERISTICS OF ELASTIC JOINT ROBOTS DRIVEN BY VARIOUS TYPES OF CONTROLLERS AGAINST EXTERNAL DISTURBANCES , 2002 .

[51]  R. Ham,et al.  Compliant actuator designs , 2009, IEEE Robotics & Automation Magazine.

[52]  Manuel G. Catalano,et al.  VSA-HD: From the enumeration analysis to the prototypical implementation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  Kai-Nan An,et al.  Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. , 2004, Clinical biomechanics.

[54]  Vikash Kumar,et al.  Fast, strong and compliant pneumatic actuation for dexterous tendon-driven hands , 2013, 2013 IEEE International Conference on Robotics and Automation.

[55]  I-Lung Chien,et al.  Simplified IMC-PID tuning rules , 1994 .

[56]  Nikolaos G. Tsagarakis,et al.  A new variable stiffness actuator (CompAct-VSA): Design and modelling , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  T. Seki,et al.  Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance , 2010 .

[58]  Bertram Herzog,et al.  Control applications , 2003 .

[59]  Gursel Alici,et al.  Adaptive sliding mode control of tri-layer conjugated polymer actuators , 2013 .

[60]  P. Komi,et al.  Muscle-tendon interaction and elastic energy usage in human walking. , 2005, Journal of applied physiology.

[61]  Zhong-Ping Jiang,et al.  Nonlinear control of a pneumatic muscle actuator system , 2001 .

[62]  Blake Hannaford,et al.  McKibben artificial muscles: pneumatic actuators with biomechanical intelligence , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[63]  Ephrahim Garcia,et al.  Reconsidering the McKibben muscle: Energetics, operating fluid, and bladder material , 2014 .

[64]  George Nikolakopoulos,et al.  Pneumatic artificial muscles: A switching Model Predictive Control approach , 2013 .

[65]  Chunyu Li,et al.  Sensors and actuators based on carbon nanotubes and their composites: A review , 2008 .

[66]  A. Aabloo,et al.  Novel actuators based on polypyrrole/carbide-derived carbon hybrid materials , 2014 .

[67]  Christine E. Schmidt,et al.  Conducting polymers in biomedical engineering , 2007 .

[68]  Sarah L. Sewell,et al.  Materials Science and Engineering C , 2009 .

[69]  Kinji Asaka,et al.  Recent advances in ionic polymer–metal composite actuators and their modeling and applications , 2013 .

[70]  Stefano Stramigioli,et al.  The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification , 2014, IEEE/ASME Transactions on Mechatronics.

[71]  E. Smela,et al.  Characterization of Conjugated Polymer Actuation under Cerebral Physiological Conditions , 2014, Advanced healthcare materials.

[72]  G. Whitesides,et al.  Soft Actuators and Robots that Are Resistant to Mechanical Damage , 2014 .

[73]  Joel E. Chestnutt,et al.  The Actuator With Mechanically Adjustable Series Compliance , 2010, IEEE Transactions on Robotics.

[74]  B. Tondu,et al.  Closed-loop position control of artificial muscles with a single integral action: Application to robust positioning of McKibben artificial muscle , 2013, 2013 IEEE International Conference on Mechatronics (ICM).

[75]  Meng Shi,et al.  Nonlinear Controlling of Artificial Muscle System with Neural Networks , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[76]  I. Hunter,et al.  The relation of conducting polymer actuator material properties to performance , 2004, IEEE Journal of Oceanic Engineering.

[77]  Hubert Zangl,et al.  1st Workshop on Proximity Perception in Robotics at IROS 2018 : Oktober, 1, 2018 Madrid Spain. IEEE/RSJ International Conference on Intelligent Robots and Systems , 2018 .

[78]  Shuichi Wakimoto,et al.  Musculoskeletal lower-limb robot driven by multifilament muscles , 2016 .

[79]  Giorgio Grioli,et al.  VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans , 2008, 2008 IEEE International Conference on Robotics and Automation.

[80]  Yuval Tassa,et al.  Modeling and identification of pneumatic actuators , 2013, 2013 IEEE International Conference on Mechatronics and Automation.

[81]  Alin Albu-Schäffer,et al.  On joint design with intrinsic variable compliance: derivation of the DLR QA-Joint , 2010, 2010 IEEE International Conference on Robotics and Automation.

[82]  Liang Yang,et al.  Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration , 2005, IEEE Transactions on Control Systems Technology.

[83]  Kazuhiko Kawamura,et al.  A frequency modeling method of rubbertuators for control application in an IMA framework , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[84]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[85]  Stephen A. Morin,et al.  Using “Click‐e‐Bricks” to Make 3D Elastomeric Structures , 2014, Advanced materials.

[86]  Mohammad Mahdi Kheirikhah,et al.  A Review of Shape Memory Alloy Actuators in Robotics , 2010, RoboCup.

[87]  Norman M. Wereley,et al.  Control System Development for Pneumatic Artificial Muscle Driven Active Rotor Systems , 2011 .

[88]  P. Tozzi,et al.  Artificial muscle: the human chimera is the future. , 2011, Swiss medical weekly.

[89]  Ron Pelrine,et al.  Stretching the Capabilities of Energy Harvesting: Electroactive Polymers Based on Dielectric Elastomers , 2013 .

[90]  Pramod K. Singh,et al.  Synthesis of graphene oxide coated Nafion membrane for actuator application , 2015 .

[91]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[92]  Alin Albu-Schäffer,et al.  DLR's torque-controlled light weight robot III-are we reaching the technological limits now? , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[93]  Aiva Simaite,et al.  Development of ionic electroactive actuators with improved interfacial adhesion : towards the fabrication of inkjet printable artificial muscles , 2015 .

[94]  Nikolaos G. Tsagarakis,et al.  Robust estimation of variable stiffness in flexible joints , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[95]  Elsevier Sdol Sensors and Actuators A: Physical , 2009 .

[96]  Dirk Kuckling,et al.  Responsive hydrogels--structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. , 2013, Chemical Society reviews.

[97]  Javier Ruiz-del-Solar,et al.  RoboCup 2010: Robot Soccer World Cup XIV , 2010, Lecture Notes in Computer Science.

[98]  Patrick van der Smagt,et al.  Neural Network Control of a Pneumatic Robot Arm , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[99]  N. Hogan Adaptive control of mechanical impedance by coactivation of antagonist muscles , 1984 .

[100]  Tae I. Um,et al.  A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions , 2011 .

[101]  Dirk Lefeber,et al.  The Concept and Design of Pleated Pneumatic Artificial Muscles , 2001 .

[102]  Ray H. Baughman,et al.  Investigation of ionic liquids as electrolytes for carbon nanotube electrodes , 2004 .

[103]  Kanji Inoue,et al.  Rubbertuators and applications for robots , 1988 .

[104]  Giorgio Grioli,et al.  A real-time parametric stiffness observer for VSA devices , 2011, 2011 IEEE International Conference on Robotics and Automation.

[105]  Yuval Tassa,et al.  Real-time behaviour synthesis for dynamic hand-manipulation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[106]  Stephen P. DeWeerth,et al.  Biologically Inspired Joint Stiffness Control , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[107]  Bram Vanderborght,et al.  Torque and compliance control of the pneumatic artificial muscles in the biped "Lucy" , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[108]  Chuang Liu,et al.  IEEE International Conference on Robotics and Biomimetics , 2014 .

[109]  M. Ibrahim,et al.  Electrospinning of highly aligned and covalently cross‐linked hydrogel microfibers , 2014 .

[110]  Keiichi Kaneto,et al.  Electrochemical Creeping and Actuation of Polypyrrole in Ionic Liquid , 2011 .

[111]  Keiichi Kaneto,et al.  Free-standing gel-like polypyrrole actuators doped with bis(perfluoroalkylsulfonyl)imide exhibiting extremely large strain , 2005 .

[112]  P. Souéres,et al.  Towards inkjet printable conducting polymer artificial muscles , 2016 .

[113]  Nikolaos G. Tsagarakis,et al.  A novel actuator with adjustable stiffness (AwAS) , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[114]  Bram Vanderborght,et al.  MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot , 2007, Robotics Auton. Syst..

[115]  Cornelia G Palivan,et al.  Stimuli-Responsive Polymers and Their Applications in Nanomedicine , 2012, Biointerphases.

[116]  Woosoon Yim,et al.  A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control , 2014 .

[117]  Seon Jeong Kim,et al.  Lima Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles Electrically , Chemically , and Photonically Powered Torsional and , 2012 .

[118]  Alin Albu-Schäffer,et al.  Robots Driven by Compliant Actuators: Optimal Control Under Actuation Constraints , 2013, IEEE Transactions on Robotics.

[119]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[120]  R. Lathe Phd by thesis , 1988, Nature.

[121]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[122]  V. Pillay,et al.  Stimuli-responsive polymers and their applications in drug delivery , 2009, Biomedical materials.

[123]  Dominiek Reynaerts,et al.  Flexible pneumatic micro-actuators: analysis and production , 2011 .

[124]  Jae-Bok Song,et al.  Hybrid dual actuator unit: A design of a variable stiffness actuator based on an adjustable moment arm mechanism , 2010, 2010 IEEE International Conference on Robotics and Automation.

[125]  Wei Min Huang,et al.  Polymeric shape memory materials and actuators , 2014 .

[126]  D. Leo,et al.  Ionic liquids as stable solvents for ionic polymer transducers , 2004 .

[127]  Jae-Bok Song,et al.  A Serial-Type Dual Actuator Unit With Planetary Gear Train: Basic Design and Applications , 2010, IEEE/ASME Transactions on Mechatronics.

[128]  Edwin Jager,et al.  The effect of film thickness on polypyrrole actuation assessed using novel non-contact strain measurements , 2013 .

[129]  Seung Tae Choi,et al.  Varifocal liquid-filled microlens operated by an electroactive polymer actuator. , 2011, Optics letters.

[130]  Dirk Lefeber,et al.  Control of a joint actuated by two Pneumatic Artificial Muscles with fast switching ON-OFF Valves , 2003 .

[131]  R. Baughman Conducting polymer artificial muscles , 1996 .

[132]  Just L. Herder,et al.  Design, actuation and control of an anthropomorphic robot arm , 2000 .

[133]  Rachel Z. Pytel,et al.  Artificial muscle morphology : structure/property relationships in polypyrrole actuators , 2007 .

[134]  Hyouk Ryeol Choi,et al.  Robotic Applications of Artificial Muscle Actuators , 2007 .

[135]  Jian Cao,et al.  Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles , 2008, Autom..

[136]  Toribio F. Otero,et al.  Comparative Study of Conducting Polymers by the ESCR Model , 2003 .

[137]  W. Takashima,et al.  Artificial Muscles Based on Polypyrrole Actuators with Large Strain and Stress Induced Electrically , 2004 .

[138]  Servicio Geológico Colombiano Sgc Volume 4 , 2013, Journal of Diabetes Investigation.

[139]  I. Takeuchi,et al.  Electrochemical and electromechanical properties of carbon black/carbon fiber composite polymer actuator with higher performance than single-walled carbon nanotube polymer actuator , 2014 .

[140]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[141]  Etienne Burdet,et al.  Human Robotics: Neuromechanics and Motor Control , 2013 .

[142]  Bertrand Tondu,et al.  A Seven-degrees-of-freedom Robot-arm Driven by Pneumatic Artificial Muscles for Humanoid Robots , 2005, Int. J. Robotics Res..