Iterative Orientation Tuning in V1: A Simple Cell Circuit with Cross-Orientation Suppression

An iterative model for contrast detection, which accounts for the contrast invariance of orientation preference, has been recently suggested [16]. The work here extends the iterative model by incorporating a cross-oriented suppression of simple cells in the primary visual cortex (V1). The modified model has a better performance in terms of robustness to noise, generates sharper edge responses while suppressing weak edges, and converges faster on equilibrium. The model exhibits a higher level of contrast invariance of orientation preference generating a clear pattern of edges in natural images.

[1]  Heiko Neumann,et al.  A simple cell model with dominating opponent inhibition for robust contrast detection , 2000, Kognitionswissenschaft.

[2]  D. Heeger Nonlinear model of neural responses in cat visual cortex. , 1991 .

[3]  S. Grossberg,et al.  Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex , 2000, Vision Research.

[4]  Heiko Neumann,et al.  A model of V1 visual contrast processing utilizing long-range connections and recurrent interactions , 1999 .

[5]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[6]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[7]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[8]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[9]  T. Hansen,et al.  Ein Modell kortikaler Einfachzellen mit dominanter opponenter Inhibition zur robusten Kontrastdetektion , 2000 .

[10]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[11]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[12]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[13]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Heiko Neumann,et al.  A Contrast- and Luminance-driven Multiscale Network Model of Brightness Perception , 1995, Vision Research.

[15]  D. Ferster The synaptic inputs to simple cells of the cat visual cortex. , 1992, Progress in brain research.

[16]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[17]  Heiko Neumann,et al.  Interaction of ON and OFF pathways for visual contrast measurement , 1999, Biological Cybernetics.

[18]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[19]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[20]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  Marina Kolesnik,et al.  Iterative Tuning of Simple Cells for Contrast Invariant Edge Enhancement , 2002, Biologically Motivated Computer Vision.

[22]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[23]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  T. Wiesel Neural Mechanisms of Visual Perception , 1997 .

[25]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.