Parallel Input Channels to Mouse Primary Visual Cortex

It is generally accepted that in mammals visual information is sent to the brain along functionally specialized parallel pathways, but whether the mouse visual system uses similar processing strategies is not known. It is important to resolve this issue because the mouse brain provides a tractable system for developing a cellular and molecular understanding of disorders affecting spatiotemporal visual processing. We have used single-unit recordings in mouse primary visual cortex to study whether individual neurons are more sensitive to one set of sensory cues than another. Our quantitative analyses show that neurons with short response latencies have low spatial acuity and high sensitivity to contrast, temporal frequency, and speed, whereas neurons with long latencies have high spatial acuity, low sensitivities to contrast, temporal frequency, and speed. These correlations suggest that neurons in mouse V1 receive inputs from a weighted combination of parallel afferent pathways with distinct spatiotemporal sensitivities.

[1]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[2]  James J DiCarlo,et al.  A rodent model for the study of invariant visual object recognition , 2009, Proceedings of the National Academy of Sciences.

[3]  M. Feller,et al.  Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion , 2009, Neuron.

[4]  Jan Paul Medema,et al.  Betulin Is a Potent Anti-Tumor Agent that Is Enhanced by Cholesterol , 2009, PloS one.

[5]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[6]  Hiroshi Ishikane,et al.  Identification of Retinal Ganglion Cells and Their Projections Involved in Central Transmission of Information about Upward and Downward Image Motion , 2009, PloS one.

[7]  A. Huberman,et al.  Architecture and Activity-Mediated Refinement of Axonal Projections from a Mosaic of Genetically Identified Retinal Ganglion Cells , 2008, Neuron.

[8]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[9]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[10]  Yumiko Umino,et al.  Speed, Spatial, and Temporal Tuning of Rod and Cone Vision in Mouse , 2008, The Journal of Neuroscience.

[11]  M. Schmolesky The Primary Visual Cortex , 2007 .

[12]  Quanxin Wang,et al.  Area map of mouse visual cortex , 2007, The Journal of comparative neurology.

[13]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[14]  Quanxin Wang,et al.  In vivo transcranial imaging of connections in mouse visual cortex , 2007, Journal of Neuroscience Methods.

[15]  Alessandra Angelucci,et al.  Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN , 2006, The Journal of comparative neurology.

[16]  Stephen D Van Hooser,et al.  The squirrel as a rodent model of the human visual system , 2006, Visual Neuroscience.

[17]  R. Douglas,et al.  Perception of visual motion coherence by rats and mice , 2006, Vision Research.

[18]  Stephen D. Van Hooser,et al.  Lack of Patchy Horizontal Connectivity in Primary Visual Cortex of a Mammal without Orientation Maps , 2006, The Journal of Neuroscience.

[19]  Nicholas J. Priebe,et al.  Tuning for Spatiotemporal Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cortex , 2006, The Journal of Neuroscience.

[20]  M. Ibbotson,et al.  Neurons in V1, V2, and PMLS of cat cortex are speed tuned but not acceleration tuned: the influence of motion adaptation. , 2006, Journal of neurophysiology.

[21]  Stephen D Van Hooser,et al.  Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). , 2005, Journal of neurophysiology.

[22]  G. DeAngelis,et al.  A Logarithmic, Scale-Invariant Representation of Speed in Macaque Middle Temporal Area Accounts for Speed Discrimination Performance , 2005, The Journal of Neuroscience.

[23]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[24]  Chun-I Yeh,et al.  Receptive field size and response latency are correlated within the cat visual thalamus. , 2005, Journal of neurophysiology.

[25]  R. Douglas,et al.  Characterization of mouse cortical spatial vision , 2004, Vision Research.

[26]  S. Molotchnikoff,et al.  Contextual modulation of synchronization to random dots in the cat visual cortex , 2004, Experimental Brain Research.

[27]  I. Thompson,et al.  Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[28]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[29]  Stephen D Van Hooser,et al.  Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis). , 2003, Journal of neurophysiology.

[30]  Michael P. Stryker,et al.  New Paradigm for Optical Imaging Temporally Encoded Maps of Intrinsic Signal , 2003, Neuron.

[31]  Hisashi Mori,et al.  Separable features of visual cortical plasticity revealed by N-methyl-d-aspartate receptor 2A signaling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Gregory C DeAngelis,et al.  Coding of horizontal disparity and velocity by MT neurons in the alert macaque. , 2003, Journal of neurophysiology.

[33]  R. Douglas,et al.  Developmental plasticity of mouse visual acuity , 2003, The European journal of neuroscience.

[34]  P. H. Schiller,et al.  Neural responses to relative speed in the primary visual cortex of rhesus monkey , 2003, Visual Neuroscience.

[35]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[36]  T. Bonhoeffer,et al.  Mapping Retinotopic Structure in Mouse Visual Cortex with Optical Imaging , 2002, The Journal of Neuroscience.

[37]  A. Janke,et al.  Mammalian mitogenomic relationships and the root of the eutherian tree , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Ringach,et al.  On the classification of simple and complex cells , 2002, Vision Research.

[39]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[40]  A. Saul,et al.  Development of Response Timing and Direction Selectivity in Cat Visual Thalamus and Cortex , 2002, The Journal of Neuroscience.

[41]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[42]  S. Solomon,et al.  Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus , 2001, The Journal of physiology.

[43]  J P Changeux,et al.  Requirement of the nicotinic acetylcholine receptor β2 subunit for the anatomical and functional development of the visual system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Shapley,et al.  Visual spatial characterization of macaque V1 neurons. , 2001, Journal of neurophysiology.

[45]  J. B. Levitt,et al.  Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. , 2001, Journal of neurophysiology.

[46]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[47]  A. B. Bonds,et al.  A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 2001, The Journal of physiology.

[48]  J. Lund,et al.  Intra- and inter-areal connections between the primary visual cortex V1 and the area immediately surrounding V1 in the rat , 2001, Neuroscience.

[49]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[50]  C. Ince,et al.  Mechanical ventilation of mice , 2000, Basic Research in Cardiology.

[51]  R. Douglas,et al.  Behavioral assessment of visual acuity in mice and rats , 2000, Vision Research.

[52]  R C Reid,et al.  Visual physiology of the lateral geniculate nucleus in two species of New World monkey: Saimiri sciureus and Aotus trivirgatis , 2000, The Journal of physiology.

[53]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[54]  L. Maffei,et al.  The visual physiology of the wild type mouse determined with pattern VEPs , 1999, Vision Research.

[55]  R. Lund,et al.  Receptive field properties of single neurons in rat primary visual cortex. , 1999, Journal of neurophysiology.

[56]  Michael P. Stryker,et al.  Anatomical Correlates of Functional Plasticity in Mouse Visual Cortex , 1999, The Journal of Neuroscience.

[57]  L. Maffei,et al.  Behavioural visual acuity of wild type and bcl2 transgenic mouse , 1999, Vision Research.

[58]  E. Callaway,et al.  Functional Streams and Local Connections of Layer 4C Neurons in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[59]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[60]  L. P. O'Keefe,et al.  Functional organization of owl monkey lateral geniculate nucleus and visual cortex. , 1998, Journal of neurophysiology.

[61]  P Lennie,et al.  Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque , 1998, Visual Neuroscience.

[62]  J. Marden,et al.  An Approach to Multivariate Rank Tests in Multivariate Analysis of Variance , 1997 .

[63]  A. B. Bonds,et al.  Stimulus-dependent modulation of spike burst length in cat striate cortical cells. , 1997, Journal of neurophysiology.

[64]  Alcino J. Silva,et al.  Deficient Plasticity in the Primary Visual Cortex of α-Calcium/Calmodulin-Dependent Protein Kinase II Mutant Mice , 1996, Neuron.

[65]  M P Stryker,et al.  Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse , 1996, The Journal of Neuroscience.

[66]  R. Shapley,et al.  Temporal-frequency selectivity in monkey visual cortex , 1996, Visual Neuroscience.

[67]  R. Grützmann,et al.  Effects of cholecystokinin on Y, X, and W cells in the dorsal lateral geniculate nucleus of rats , 1996, Experimental Brain Research.

[68]  E. Kaplan,et al.  Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. , 1995, Journal of neurophysiology.

[69]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  J. Maunsell,et al.  Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  K. H. Britten,et al.  Responses of neurons in macaque MT to stochastic motion signals , 1993, Visual Neuroscience.

[72]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[73]  L. Pinto,et al.  Response properties of ganglion cells in the isolated mouse retina , 1993, Visual Neuroscience.

[74]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[76]  David C. Burr,et al.  Orientation discrimination depends on spatial frequency , 1991, Vision Research.

[77]  A. Burkhalter,et al.  Organization of local axon collaterals of efferent projection neurons in rat visual cortex , 1990, The Journal of comparative neurology.

[78]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[79]  R. L. de Valois,et al.  Responses of simple and complex cells to random dot patterns: a quantitative comparison. , 1988, Journal of neurophysiology.

[80]  V. Casagrande,et al.  Contrast-sensitivity functions of W-, X-, and Y-like relay cells in the lateral geniculate nucleus of bush baby, Galago crassicaudatus. , 1988, Journal of neurophysiology.

[81]  B. E. Reese,et al.  ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat , 1988, Brain Research Reviews.

[82]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[83]  B. Boycott,et al.  Alpha ganglion cells in mammalian retinae , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[84]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[85]  C. Blakemore,et al.  Organization and post‐natal development of the monkey's lateral geniculate nucleus. , 1986, The Journal of physiology.

[86]  P. E. Hallett,et al.  A schematic eye for the mouse, and comparisons with the rat , 1985, Vision Research.

[87]  L Maffei,et al.  Spatial‐frequency characteristics of neurones of area 18 in the cat: dependence on the velocity of the visual stimulus. , 1985, The Journal of physiology.

[88]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[89]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[90]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[91]  O. Creutzfeldt,et al.  The representation of contrast and other stimulus parameters by single neurons in area 17 of the cat , 1984, Pflügers Archiv.

[92]  H. Saito,et al.  Morphology of physiologically identified X‐, Y‐, and W‐type retinal ganglion cells of the cat , 1983, The Journal of comparative neurology.

[93]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[94]  M. Imbert,et al.  [Physiological and anatomical study of the retinogeniculate projections in the mouse]. , 1983, Comptes rendus des seances de l'Academie des sciences. Serie III, Sciences de la vie.

[95]  L. Pinto,et al.  Electrophysiology of retinal ganglion cells in the mouse: a study of a normally pigmented mouse and a congenic hypopigmentation mutant, pearl. , 1982, Journal of neurophysiology.

[96]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[97]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[98]  M Sur,et al.  Linear and nonlinear W-cells in C-laminae of the cat's lateral geniculate nucleus. , 1982, Journal of neurophysiology.

[99]  P. Lennie,et al.  Spatial contrast sensitivity of cells in the lateral geniculate nucleus of the rat. , 1981, The Journal of physiology.

[100]  N. Mangini,et al.  Retinotopic organization of striate and extrastriate visual cortex in the mouse , 1980, The Journal of comparative neurology.

[101]  A L Pearlman,et al.  Laminar distribution of receptive field properties in the primary visual cortex of the mouse , 1980, The Journal of comparative neurology.

[102]  U. Dräger,et al.  Origins of crossed and uncrossed retinal projections in pigmented and albino mice , 1980, The Journal of comparative neurology.

[103]  S. Sherman,et al.  Spatial and temporal sensitivity of X- and Y-cells in dorsal lateral geniculate nucleus of the cat. , 1980, Journal of neurophysiology.

[104]  D. Sinex,et al.  A psychophysical investigation of spatial vision in the normal and reeler mutant mouse , 1979, Vision Research.

[105]  Jonathan Stone,et al.  Hierarchical and parallel mechanisms in the organization of visual cortex , 1979, Brain Research Reviews.

[106]  Robert Shapley,et al.  Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs , 1979, Experimental Brain Research.

[107]  B. Dreher,et al.  A correlation of receptive field properties with conduction velocity of cells in the rat's retino-geniculo-cortical pathway , 1979, Experimental Brain Research.

[108]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[109]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[110]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[111]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[112]  S. Sherman,et al.  X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 1976, Science.

[113]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[114]  U. Dräger,et al.  Receptive fields of single cells and topography in mouse visual cortex , 1975, The Journal of comparative neurology.

[115]  D. L. Stewart,et al.  Receptive field characteristics of striate cortical neurons in the rabbit. , 1971, Brain research.

[116]  J. Stone,et al.  Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. , 1971, Brain research.

[117]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[118]  F. Fraunfelder,et al.  Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. , 1970, Experimental eye research.

[119]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[120]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[121]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[122]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[123]  I. Bókkon,et al.  Primary visual cortex; , 2009 .

[124]  E. Kaplan,et al.  The P, M and K Streams of the Primate Visual System: What Do They Do for Vision? , 2008 .

[125]  A. Angelucci,et al.  Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. , 2006, Progress in brain research.

[126]  U. Zippel,et al.  Regional distribution of fast and slow geniculo-cortical relay cells (GCR-cells) within the rat's dorsal lateral geniculate nucleus (LGNd) , 2004, Experimental Brain Research.

[127]  M. Imbert,et al.  The primary visual cortex in the mouse: Receptive field properties and functional organization , 2004, Experimental Brain Research.

[128]  J. Morgan,et al.  Spatial properties of neurones in the lateral geniculate nucleus of the pigmented ferret , 2004, Experimental Brain Research.

[129]  Y. Fukuda Differentiation of principal cells of the rat lateral geniculate body into two groups; fast and slow cells , 2004, Experimental Brain Research.

[130]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[131]  Nicholas V. Swindale,et al.  Orientation tuning curves: empirical description and estimation of parameters , 1998, Biological Cybernetics.

[132]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[133]  P. Lennie,et al.  Spatial frequency analysis in the visual system. , 1985, Annual review of neuroscience.

[134]  R. Shapley,et al.  Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. , 1981, Journal of neurophysiology.

[135]  Y. Fukuda,et al.  Receptive-field properties of cells in the dorsal part of the albino rat's lateral geniculate nucleus. , 1979, The Japanese journal of physiology.

[136]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[137]  D. H. Kelly Adaptation effects on spatio-temporal sine-wave thresholds. , 1972, Vision research.

[138]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[139]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .