Coupling layers regularizes wave propagation in stochastic neural fields.

We explore how layered architectures influence the dynamics of stochastic neural field models. Our main focus is how the propagation of waves of neural activity in each layer is affected by interlaminar coupling. Synaptic connectivities within and between each layer are determined by integral kernels of an integrodifferential equation describing the temporal evolution of neural activity. Excitatory neural fields, with purely positive connectivities, support traveling fronts in each layer, whose speeds are increased when coupling between layers is considered. Studying the effects of noise, we find coupling reduces the variance in the position of traveling fronts, as long as the noise sources to each layer are not completely correlated. Neural fields with asymmetric connectivity support traveling pulses whose speeds are decreased by interlaminar coupling. Again, coupling reduces the variance in traveling pulse position. Asymptotic analysis is performed using a small-noise expansion, assuming interlaminar connectivity scales similarly.

[1]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[2]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[3]  P. Bressloff Traveling fronts and wave propagation failure in an inhomogeneous neural network , 2001 .

[4]  G. Ermentrout,et al.  Existence and uniqueness of travelling waves for a neural network , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  G B Ermentrout,et al.  New patterns of activity in a pair of interacting excitatory-inhibitory neural fields. , 2011, Physical review letters.

[6]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  Olga Smirnova,et al.  Nature in London , 2016 .

[8]  J. M. Sancho,et al.  Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise , 1998 .

[9]  D. Kleinfeld,et al.  Traveling Electrical Waves in Cortex Insights from Phase Dynamics and Speculation on a Computational Role , 2001, Neuron.

[10]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[11]  W. Cowan,et al.  Annual Review of Neuroscience , 1995 .

[12]  T. Hafting,et al.  Finite Scale of Spatial Representation in the Hippocampus , 2008, Science.

[13]  Heinz Zemanek,et al.  Kybernetik , 1964, Elektron. Rechenanlagen.

[14]  Paul C. Bressloff,et al.  Front Propagation in Stochastic Neural Fields , 2012, SIAM J. Appl. Dyn. Syst..

[15]  M. Giese,et al.  Nonlinear dynamics of direction-selective recurrent neural media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[17]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[18]  Zachary P. Kilpatrick,et al.  Interareal coupling reduces encoding variability in multi-area models of spatial working memory , 2013, Front. Comput. Neurosci..

[19]  Jianing Yu,et al.  Top-down laminar organization of the excitatory network in motor cortex , 2008, Nature Neuroscience.

[20]  Raag D. Airan,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.

[21]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[22]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[24]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[25]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[26]  Cheng Ly,et al.  Coupling regularizes individual units in noisy populations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Jian-Young Wu,et al.  Spiral Waves in Disinhibited Mammalian Neocortex , 2004, The Journal of Neuroscience.

[28]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[29]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[30]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[31]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[34]  Lutz Schimansky-Geier,et al.  Additive global noise delays Turing bifurcations. , 2007, Physical review letters.

[35]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[36]  Zachary P. Kilpatrick,et al.  Wandering Bumps in Stochastic Neural Fields , 2012, SIAM J. Appl. Dyn. Syst..

[37]  N. Hatsopoulos,et al.  Propagating waves mediate information transfer in the motor cortex , 2006, Nature Neuroscience.

[38]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[39]  Paul C. Bressloff,et al.  Binocular Rivalry in a Competitive Neural Network with Synaptic Depression , 2010, SIAM J. Appl. Dyn. Syst..

[40]  Bard Ermentrout,et al.  Spatially Structured Activity in Synaptically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses , 2001, SIAM J. Appl. Math..

[41]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[42]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[43]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[44]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[45]  Alanna J. Watt,et al.  Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity , 2009, Nature Neuroscience.

[46]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[47]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  B. Ermentrout,et al.  Response of traveling waves to transient inputs in neural fields. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  S. Schiff,et al.  Control of traveling waves in the Mammalian cortex. , 2005, Physical review letters.

[50]  Paul C. Bressloff,et al.  Neural field model of binocular rivalry waves , 2012, Journal of Computational Neuroscience.

[51]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[52]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[53]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[54]  E. Moser,et al.  Spatial representation and the architecture of the entorhinal cortex , 2006, Trends in Neurosciences.

[55]  P. Bressloff,et al.  Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network , 2010 .

[56]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[57]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[58]  B. M. Fulk MATH , 1992 .

[59]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[60]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[61]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[62]  C. Curtis Prefrontal and parietal contributions to spatial working memory , 2006, Neuroscience.

[63]  P. Bressloff Spatiotemporal dynamics of continuum neural fields , 2012 .