Modeling Structures and Motions of Loops in Protein Molecules

Authors to whom correspondence should be addressed; E-Mails: amarda@gmu.edu (A.S.);kavraki@rice.edu (L.E.K.); Tel.: +1-703-993-4135 (A.S.); Fax: +1-703-993-1710 (A.S.);Tel.: +1-713-348-5737 (L.E.K.); Fax: +1-713-348-5930 (L.E.K.)Received: 26 December 2011; in revised form: 10 January 2012 / Accepted: 3 February 2012 /Published: 13 February 2012Abstract: Unlike the secondary structure elements that connect in protein structures, loopfragments in protein chains are often highly mobile even in generally stable proteins. Thestructural variability of loops is often at the center of a protein’s stability, folding, and evenbiological function. Loops are found to mediate important biological processes, such assignaling, protein-ligand binding, and protein-protein interactions. Modeling conformationsof a loop under physiological conditions remains an open problem in computational biology.This article reviews computational research in loop modeling, highlighting progress andchallenges. Important insight is obtained on potential directions for future research.Keywords: loop modeling; conformational ensemble; equilibrium fluctuations; native state;structural analysis of proteins; structural bioinformatics

[1]  C. Deane,et al.  A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins , 2000, Proteins.

[2]  Chaok Seok,et al.  A kinematic view of loop closure , 2004, J. Comput. Chem..

[3]  Lydia E. Kavraki,et al.  A New Method for Fast and Accurate Derivation of Molecular Conformations. , 2010 .

[4]  M. Levitt Accurate modeling of protein conformation by automatic segment matching. , 1992, Journal of molecular biology.

[5]  Martin J Field,et al.  Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations. , 2007, The journal of physical chemistry. B.

[6]  Nancy M. Amato,et al.  Using Motion Planning to Map Protein Folding Landscapes and Analyze Folding Kinetics of Known Native Structures , 2003, J. Comput. Biol..

[7]  J. Ponder,et al.  Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions , 1998 .

[8]  M. Karplus,et al.  Conformational sampling using high‐temperature molecular dynamics , 1990, Biopolymers.

[9]  R A Friesner,et al.  Prediction of loop geometries using a generalized born model of solvation effects , 1999, Proteins.

[10]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[11]  Jean Garnier,et al.  Development of an extended simulated annealing method: Application to the modeling of complementary determining regions of immunoglobulins , 1992, Biopolymers.

[12]  R C Brower,et al.  Exhaustive conformational search and simulated annealing for models of lattice peptides , 1993, Biopolymers.

[13]  Jean-Claude Latombe,et al.  A Motion Planning Approach to Flexible Ligand Binding , 1999, ISMB.

[14]  M. Thorpe,et al.  Constrained geometric simulation of diffusive motion in proteins , 2005, Physical biology.

[15]  Thierry Siméon,et al.  Geometric algorithms for the conformational analysis of long protein loops , 2004, J. Comput. Chem..

[16]  Wilfred F. van Gunsteren,et al.  Biomolecular Modeling: Goals, Problems, Perspectives , 2006 .

[17]  A. Kidera,et al.  Free energy landscapes of peptides by enhanced conformational sampling. , 2000, Journal of molecular biology.

[18]  J. Moult,et al.  Ab initio structure prediction for small polypeptides and protein fragments using genetic algorithms , 1995, Proteins.

[19]  G. Chirikjian,et al.  Efficient generation of feasible pathways for protein conformational transitions. , 2002, Biophysical journal.

[20]  S. Plotkin,et al.  Three-body interactions improve the prediction of rate and mechanism in protein folding models. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  J. Onuchic,et al.  Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations , 2006, Proceedings of the National Academy of Sciences.

[23]  Frank A. DeWitt An inverse kinematics approach to hexapod design and control , 2009, Optical Engineering + Applications.

[24]  J. Latombe,et al.  Sampling‐based exploration of folded state of a protein under kinematic and geometric constraints , 2012, Proteins.

[25]  Loop Problem in Proteins: Developments on the Monte Carlo , 1996 .

[26]  D. Kern,et al.  Dynamic personalities of proteins , 2007, Nature.

[27]  Gregory S. Chirikjian,et al.  General methods for computing hyper-redundant manipulator inverse kinematics , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[28]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[29]  B. Tidor Molecular dynamics simulations , 1997, Current Biology.

[30]  Bruce Randall Donald,et al.  Dead-End Elimination with Backbone Flexibility , 2007, ISMB/ECCB.

[31]  R. Friesner,et al.  Long loop prediction using the protein local optimization program , 2006, Proteins.

[32]  L. Lai,et al.  Protein loops on structurally similar scaffolds: database and conformational analysis. , 1999, Biopolymers.

[33]  Nicholas C Fitzkee,et al.  The Protein Coil Library: A structural database of nonhelix, nonstrand fragments derived from the PDB , 2005, Proteins.

[34]  Harold A. Scheraga,et al.  Pattern recognition in the prediction of protein structure. III. An importance‐sampling minimization procedure , 1989 .

[35]  Dinesh Manocha,et al.  Kinematic Manipulation of Molecular Chains Subject to Rigid Constraint , 1994, ISMB.

[36]  Nancy M. Amato,et al.  A kinematics-based probabilistic roadmap method for high DOF closed chain systems , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[37]  Jochen S. Hub,et al.  Detection of Functional Modes in Protein Dynamics , 2010 .

[38]  Cyril F. Reboul,et al.  Mastering the Canonical Loop of Serine Protease Inhibitors: Enhancing Potency by Optimising the Internal Hydrogen Bond Network , 2011, PloS one.

[39]  M. Karplus,et al.  Prediction of the folding of short polypeptide segments by uniform conformational sampling , 1987, Biopolymers.

[40]  T. Siméon,et al.  An NMA‐guided path planning approach for computing large‐amplitude conformational changes in proteins , 2007, Proteins.

[41]  A. Lesk,et al.  Canonical structures for the hypervariable regions of immunoglobulins. , 1987, Journal of molecular biology.

[42]  Michele Vendruscolo,et al.  Rare fluctuations of native proteins sampled by equilibrium hydrogen exchange. , 2003, Journal of the American Chemical Society.

[43]  Chaok Seok,et al.  Protein loop modeling by using fragment assembly and analytical loop closure , 2010, Proteins.

[44]  Jean-Claude Latombe,et al.  Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics: Folding Rates and Phi-Values , 2007, J. Comput. Biol..

[45]  Chih-Cheng Chen,et al.  A combined optimization method for solving the inverse kinematics problems of mechanical manipulators , 1991, IEEE Trans. Robotics Autom..

[46]  E. Coutsias,et al.  Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling , 2009, Nature Methods.

[47]  B. Honig,et al.  Evaluation of the conformational free energies of loops in proteins , 1994, Proteins.

[48]  Thierry Siméon,et al.  A random loop generator for planning the motions of closed kinematic chains using PRM methods , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[49]  Jean-Claude Latombe,et al.  Computing Protein Structures from Electron Density Maps: The Missing Fragment Problem , 2004, WAFR.

[50]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[51]  Kai Zhu,et al.  Toward better refinement of comparative models: Predicting loops in inexact environments , 2008, Proteins.

[52]  J. Moult,et al.  An algorithm for determining the conformation of polypeptide segments in proteins by systematic search , 1986, Proteins.

[53]  C DeLisi,et al.  Multiple copy sampling in protein loop modeling: Computational efficiency and sensitivity to dihedral angle perturbations , 1994, Protein science : a publication of the Protein Society.

[54]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[55]  Lydia E. Kavraki,et al.  Finding Solutions of the Inverse Kinematics Problems in Computer-aided Drug Design , 2002 .

[56]  Dinesh Manocha,et al.  Conformational analysis of molecular chains using nano-kinematics , 1995, Comput. Appl. Biosci..

[57]  H. Scheraga,et al.  Pattern recognition in the prediction of protein structure. I. Tripeptide conformational probabilities calculated from the amino acid sequence , 1989 .

[58]  Song Liu,et al.  Accurate and efficient loop selections by the DFIRE‐based all‐atom statistical potential , 2004, Protein science : a publication of the Protein Society.

[59]  Daniel W. Farrell,et al.  Generating stereochemically acceptable protein pathways , 2010, Proteins.

[60]  Robert E. Bruccoleri,et al.  Chain closure with bond angle variations , 1985 .

[61]  A V Finkelstein,et al.  Search for the stable state of a short chain in a molecular field. , 1992, Protein engineering.

[62]  T. A. Jones,et al.  Using known substructures in protein model building and crystallography. , 1986, The EMBO journal.

[63]  Harold A. Scheraga,et al.  Standard‐geometry chains fitted to X‐ray derived structures: Validation of the rigid‐geometry approximation. I. Chain closure through a limited search of “loop” conformations , 1991 .

[64]  Eckart Bindewald,et al.  A divide and conquer approach to fast loop modeling. , 2002, Protein engineering.

[65]  A. Lesk,et al.  Common features of the conformations of antigen‐binding loops in immunoglobulins and application to modeling loop conformations , 1992, Proteins.

[66]  R Samudrala,et al.  A graph-theoretic algorithm for comparative modeling of protein structure. , 1998, Journal of molecular biology.

[67]  K. Fidelis,et al.  Comparison of systematic search and database methods for constructing segments of protein structure. , 1994, Protein engineering.

[68]  Itay Lotan,et al.  Algorithms exploiting the chain structure of proteins , 2004 .

[69]  M. DePristo,et al.  Ab initio construction of polypeptide fragments: Efficient generation of accurate, representative ensembles , 2003, Proteins.

[70]  Ron Goldman,et al.  Improving conformational searches by geometric screening , 2005, Bioinform..

[71]  Cinque S. Soto,et al.  Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Russ B. Altman,et al.  Efficient Algorithms to Explore Conformation Spaces of Flexible Protein Loops , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[73]  Jiří Novotný,et al.  Structure of antibody hypervariable loops reproduced by a conformational search algorithm , 1988, Nature.

[74]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  A. Kidera,et al.  Enhanced conformational sampling in Monte Carlo simulations of proteins: application to a constrained peptide. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Richard S. Judson,et al.  Analysis of the genetic algorithm method of molecular conformation determination , 1993, J. Comput. Chem..

[77]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[78]  Martha M. Teeter,et al.  Improvement of turn structure prediction by molecular dynamics : a case study of α1-purothionin , 1993 .

[79]  Roland L. Dunbrack,et al.  Comparative modeling of CASP3 targets using PSI‐BLAST and SCWRL , 1999, Proteins.

[80]  Qiang Zheng,et al.  Loop closure via bond scaling and relaxation , 1993, J. Comput. Chem..

[81]  Yaohang Li,et al.  Sampling Multiple Scoring Functions Can Improve Protein Loop Structure Prediction Accuracy , 2011, J. Chem. Inf. Model..

[82]  M. Thorpe,et al.  Protein flexibility using constraints from molecular dynamics simulations , 2005, Physical biology.

[83]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[84]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[85]  P. Bradley,et al.  Toward High-Resolution de Novo Structure Prediction for Small Proteins , 2005, Science.

[86]  Chaok Seok,et al.  The FALC-Loop web server for protein loop modeling , 2011, Nucleic Acids Res..

[87]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[88]  M Karplus,et al.  Modeling of globular proteins. A distance-based data search procedure for the construction of insertion/deletion regions and Pro----non-Pro mutations. , 1990, Journal of molecular biology.

[89]  Pu Liu,et al.  A Self-Organizing Algorithm for Modeling Protein Loops , 2009, PLoS Comput. Biol..

[90]  Andrew J. Martin,et al.  Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. , 1996, Journal of molecular biology.

[91]  Louis Carlacci,et al.  Loop problem in proteins: Developments on Monte Carlo simulated annealing approach , 1996 .

[92]  Thierry Siméon,et al.  A path planning approach for computing large-amplitude motions of flexible molecules , 2005, ISMB.

[93]  J. Onuchic,et al.  Theory of Protein Folding This Review Comes from a Themed Issue on Folding and Binding Edited Basic Concepts Perfect Funnel Landscapes and Common Features of Folding Mechanisms , 2022 .

[94]  G Vasmatzis,et al.  Predicting immunoglobulin‐like hypervariable loops , 1994, Biopolymers.

[95]  Jean-Claude Latombe,et al.  Stochastic roadmap simulation: an efficient representation and algorithm for analyzing molecular motion , 2002, RECOMB '02.

[96]  David B. Dahl,et al.  Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity , 2011, PLoS Comput. Biol..

[97]  A Tramontano,et al.  Conformations of the third hypervariable region in the VH domain of immunoglobulins. , 1998, Journal of molecular biology.

[98]  J. Onuchic,et al.  Theory of protein folding: the energy landscape perspective. , 1997, Annual review of physical chemistry.

[99]  C. DeLisi,et al.  Computing the structure of bound peptides. Application to antigen recognition by class I major histocompatibility complex receptors. , 1993, Journal of molecular biology.

[100]  Rakefet Rosenfeld,et al.  Simultaneous modeling of multiple loops in proteins , 1995, Protein science : a publication of the Protein Society.

[101]  Ronald M Levy,et al.  Have we seen all structures corresponding to short protein fragments in the Protein Data Bank? An update. , 2003, Protein engineering.

[102]  Crystal Structure of Lyme Disease Variable Surface Antigen VlsE of Borrelia burgdorferi * , 2002, The Journal of Biological Chemistry.

[103]  C. DeLisi,et al.  Determining minimum energy conformations of polypeptides by dynamic programming , 1990, Biopolymers.

[104]  L. Kavraki,et al.  On the characterization of protein native state ensembles. , 2007, Biophysical journal.

[105]  L. Kavraki,et al.  Modeling protein conformational ensembles: From missing loops to equilibrium fluctuations , 2006, Proteins.

[106]  B. Honig,et al.  A hierarchical approach to all‐atom protein loop prediction , 2004, Proteins.

[107]  S Vajda,et al.  Determining protein loop conformation using scaling‐relaxation techniques , 1993, Protein science : a publication of the Protein Society.

[108]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[109]  D. Jacobs,et al.  Protein flexibility predictions using graph theory , 2001, Proteins.

[110]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[111]  Jean-Claude Latombe,et al.  Capturing molecular energy landscapes with probabilistic conformational roadmaps , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[112]  O. Brock,et al.  A methodology for efficiently sampling the conformation space of molecular structures , 2005, Physical Biology.

[113]  Harold A. Scheraga,et al.  Pattern recognition in the prediction of protein structure. II. Chain conformation from a probability‐directed search procedure , 1989 .

[114]  U. Lessel,et al.  Similarities between protein 3-D structures. , 1994, Protein engineering.

[115]  P. Koehl,et al.  A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling , 1995, Nature Structural Biology.

[116]  Yang Li,et al.  KINARI-Web: a server for protein rigidity analysis , 2011, Nucleic Acids Res..

[117]  J A McCammon,et al.  Anti‐insulin antibody structure and conformation. II. Molecular dynamics with explicit solvent , 1992, Biopolymers.

[118]  M. F. Thorpe,et al.  Macromolecular flexibility , 2004 .

[119]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[120]  A. Mathiowetz,et al.  De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology , 1995, Protein Science.

[121]  S. Englander,et al.  The loop problem in proteins: A monte carlo simulated annealing approach , 1993, Biopolymers.

[122]  H. Scheraga,et al.  Exact analytical loop closure in proteins using polynomial equations , 1999 .

[123]  Peter E Wright,et al.  Structure, dynamics, and catalytic function of dihydrofolate reductase. , 2004, Annual review of biophysics and biomolecular structure.

[124]  M. Karplus,et al.  PDB-based protein loop prediction: parameters for selection and methods for optimization. , 1997, Journal of molecular biology.

[125]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[126]  P G Wolynes,et al.  Protein folding mechanisms and the multidimensional folding funnel , 1998, Proteins.

[127]  C. Levinthal,et al.  Predicting antibody hypervariable loop conformations II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations , 1986, Proteins.

[128]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.

[129]  F. Cohen,et al.  Taxonomy and conformational analysis of loops in proteins. , 1992, Journal of molecular biology.

[130]  Itay Lotan,et al.  Real-space protein-model completion: an inverse-kinematics approach. , 2005, Acta crystallographica. Section D, Biological crystallography.

[131]  Leonidas J. Guibas,et al.  Inverse Kinematics in Biology: The Protein Loop Closure Problem , 2005, Int. J. Robotics Res..

[132]  Barry Honig,et al.  Loop modeling: Sampling, filtering, and scoring , 2007, Proteins.

[133]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[134]  A. Lesk,et al.  Conformations of immunoglobulin hypervariable regions , 1989, Nature.

[135]  Lydia E. Kavraki,et al.  Randomized path planning for linkages with closed kinematic chains , 2001, IEEE Trans. Robotics Autom..

[136]  Nancy M. Amato,et al.  A Kinematics-Based Probabilistic Roadmap Method for Closed Chain Systems , 2001 .

[137]  S. Wodak,et al.  Modelling the polypeptide backbone with 'spare parts' from known protein structures. , 1989, Protein engineering.

[138]  Jean-Claude Latombe,et al.  On the structure of the inverse kinematics map of a fragment of protein backbone , 2008, J. Comput. Chem..

[139]  I. Connerton,et al.  Structural basis of the properties of an industrially relevant thermophilic xylanase , 1997, Proteins.

[140]  Nancy M. Amato,et al.  A motion planning approach to folding: from paper craft to protein folding , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[141]  J. Garnier,et al.  Modeling of protein loops by simulated annealing , 1993, Protein science : a publication of the Protein Society.

[142]  Cecilia Clementi,et al.  Coarse-grained models of protein folding: toy models or predictive tools? , 2008, Current opinion in structural biology.

[143]  Jerome Nilmeier,et al.  Assessing protein loop flexibility by hierarchical Monte Carlo sampling. , 2011, Journal of chemical theory and computation.

[144]  R. Abagyan,et al.  Protein engineering with monomeric triosephosphate isomerase (monoTIM): the modelling and structure verification of a seven-residue loop. , 1997, Protein engineering.

[145]  P. Romero,et al.  Sequence complexity of disordered protein , 2001, Proteins.

[146]  L. Wyns,et al.  Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? , 2000, Journal of molecular biology.

[147]  Boriana Marintcheva,et al.  A unique loop in T7 DNA polymerase mediates the binding of helicase-primase, DNA binding protein, and processivity factor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[148]  Lydia E. Kavraki,et al.  Sampling Conformation Space to Model Equilibrium Fluctuations in Proteins , 2007, Algorithmica.

[149]  K. Dill,et al.  Resultants and Loop Closure , 2006 .

[150]  Thierry Siméon,et al.  Probabilistic motion planning for parallel mechanisms , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[151]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[152]  E. Primrose On the input-output equation of the general 7R-mechanism , 1986 .

[153]  Robert E. Bruccoleri,et al.  Application of Systematic Conformational Search to Protein Modeling , 1993 .

[154]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[155]  S. Gill,et al.  Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity , 2009, FEBS Letters.

[156]  C. Levinthal,et al.  Predicting antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures , 1987, Biopolymers.

[157]  John P. Overington,et al.  Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. , 1993, Journal of molecular biology.

[158]  Harold A. Scheraga,et al.  Protein structure prediction using a combination of sequence homology and global energy minimization I. Global energy minimization of surface loops , 1990 .

[159]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[160]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.