Towards a Theory of Non-Commutative Optimization: Geodesic 1st and 2nd Order Methods for Moment Maps and Polytopes

This paper initiates a systematic development of a theory of non-commutative optimization, a setting which greatly extends ordinary (Euclidean) convex optimization. It aims to unify and generalize a growing body of work from the past few years which developed and analyzed algorithms for natural geodesic convex optimization problems on Riemannian manifolds that arise from the symmetries of non-commutative groups. More specifically, these are algorithms to minimize the moment map (a non-commutative notion of the usual gradient), and to test membership in moment polytopes (a vast class of polytopes, typically of exponential vertex and facet complexity, which quite magically arise from this a-priori non-convex, non-linear setting). The importance of understanding this very general setting of geodesic optimization, as these works unveiled and powerfully demonstrate, is that it captures a diverse set of problems, many non-convex, in different areas of CS, math, and physics. Several of them were solved efficiently for the first time using non-commutative methods; the corresponding algorithms also lead to solutions of purely structural problems and to many new connections between disparate fields. In the spirit of standard convex optimization, we develop two general methods in the geodesic setting, a first order and a second order method, which respectively receive first and second order information on the "derivatives" of the function to be optimized. These in particular subsume all past results. The main technical work, again unifying and extending much of the previous work, goes into identifying the key parameters of the underlying group actions which control convergence to the optimum in each of these methods. These non-commutative analogues of "smoothness" in the commutative case are far more complex, and require significant algebraic and analytic machinery (much existing and some newly developed here). Despite this complexity, the way in which these parameters control convergence in both methods is quite simple and elegant. We also bound these parameters in several general cases. Our work points to intriguing open problems and suggests further research directions. We believe that extending this theory, namely understanding geodesic optimization better, is both mathematically and computationally fascinating; it provides a great meeting place for ideas and techniques from several very different research areas, and promises better algorithms for existing and yet unforeseen applications.

[1]  Harm Derksen,et al.  Polynomial degree bounds for matrix semi-invariants , 2015, ArXiv.

[2]  Suvrit Sra,et al.  Fast stochastic optimization on Riemannian manifolds , 2016, ArXiv.

[3]  A. King MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS , 1994 .

[4]  Youming Qiao,et al.  Constructive noncommutative rank computation in deterministic polynomial time over fields of arbitrary characteristics , 2015, ArXiv.

[5]  Michael Walter,et al.  Membership in Moment Polytopes is in NP and coNP , 2015, SIAM J. Comput..

[6]  Peter Bürgisser,et al.  The Computational Complexity to Evaluate Representations of General Linear Groups , 2000, SIAM J. Comput..

[7]  L. Gurvits,et al.  The Deeation-innation Method for Certain Semideenite Programming and Maximum Determinant Completion Problems , 1998 .

[8]  Peter Bürgisser,et al.  Deciding Positivity of Littlewood-Richardson Coefficients , 2012, SIAM J. Discret. Math..

[9]  Harm Derksen,et al.  An Introduction to Quiver Representations , 2017 .

[10]  Michael Walter,et al.  Multipartite Quantum States and their Marginals , 2014, 1410.6820.

[11]  M. Franz Moment Polytopes of Projective G-Varieties and Tensor Products of Symmetric Group Representations , 2002 .

[12]  G. Kempf,et al.  The length of vectors in representation spaces , 1979 .

[13]  Ran Raz,et al.  Deterministic polynomial identity testing in non-commutative models , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[14]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[15]  Cole Franks Operator scaling with specified marginals , 2018, STOC.

[16]  Michiel Hazewinkel,et al.  Handbook of algebra , 1995 .

[17]  Youming Qiao,et al.  Constructive non-commutative rank computation is in deterministic polynomial time , 2015, computational complexity.

[18]  Arkady Berenstein,et al.  Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion , 1998 .

[19]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[20]  Harm Derksen,et al.  Algorithms for orbit closure separation for invariants and semi-invariants of matrices , 2018, Algebra & Number Theory.

[21]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[22]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[23]  Aram W. Harrow,et al.  Nonzero Kronecker Coefficients and What They Tell us about Spectra , 2007 .

[24]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[25]  V. M. Kravtsov Combinatorial properties of noninteger vertices of a polytope in a three-index axial assignment problem , 2007 .

[26]  Leonid Gurvits Combinatorial and algorithmic aspects of hyperbolic polynomials , 2004, Electron. Colloquium Comput. Complex..

[27]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[28]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[29]  Ankur Moitra,et al.  The Paulsen problem made simple , 2018, Israel Journal of Mathematics.

[30]  B. Kostant On convexity, the Weyl group and the Iwasawa decomposition , 1973 .

[31]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[32]  M. Brion,et al.  Sur l'image de l'application moment , 1987 .

[33]  A. I. Molev Gelfand-Tsetlin bases for classical Lie algebras , 2002 .

[34]  Suvrit Sra,et al.  Fast stochastic optimization on Riemannian manifolds , 2016, ArXiv.

[35]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[36]  F. Kirwan Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 , 1984 .

[37]  A. Klyachko Stable bundles, representation theory and Hermitian operators , 1998 .

[38]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.

[39]  Shrawan Kumar,et al.  Eigenvalue problem and a new product in cohomology of flag varieties , 2004, math/0407034.

[40]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[41]  Avi Wigderson,et al.  Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing , 2018, STOC.

[42]  P. Hayden,et al.  Quantum state transformations and the Schubert calculus , 2004, quant-ph/0410052.

[43]  Avi Wigderson,et al.  Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2018 .

[44]  S. Sternberg,et al.  Convexity properties of the moment mapping , 1982 .

[45]  Avi Wigderson,et al.  Efficient Algorithms for Tensor Scaling, Quantum Marginals, and Moment Polytopes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[46]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[47]  Peter Bürgisser,et al.  A max-flow algorithm for positivity of Littlewood-Richardson coefficients , 2009 .

[48]  A. Klyachko QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.

[49]  Suvrit Sra,et al.  First-order Methods for Geodesically Convex Optimization , 2016, COLT.

[50]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[51]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[52]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Efficient algorithms for Noether Normalization , 2012 .

[53]  Michael Walter,et al.  Computing Multiplicities of Lie Group Representations , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[54]  Nicolas Ressayre,et al.  Geometric invariant theory and the generalized eigenvalue problem , 2007, 0704.2127.

[55]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[56]  Frances Kirwan,et al.  Convexity properties of the moment mapping, III , 1984 .

[57]  Leonid Gurvits,et al.  Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.

[58]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .

[59]  Matthias Christandl,et al.  Eigenvalue Distributions of Reduced Density Matrices , 2012, 1204.0741.

[60]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[61]  Avi Wigderson,et al.  Operator Scaling: Theory and Applications , 2015, Found. Comput. Math..

[62]  Velleda Baldoni,et al.  Horn inequalities and quivers , 2018, 1804.00431.

[63]  Velleda Baldoni,et al.  Computation of dilated Kronecker coefficients , 2018, J. Symb. Comput..

[64]  Suvrit Sra,et al.  Towards Riemannian Accelerated Gradient Methods , 2018, ArXiv.

[65]  Michael Atiyah,et al.  Convexity and Commuting Hamiltonians , 1982 .

[66]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[67]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[68]  Yin Tat Lee,et al.  The Paulsen problem, continuous operator scaling, and smoothed analysis , 2017, STOC.

[69]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[70]  Avi Wigderson,et al.  Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2016, Geometric and Functional Analysis.

[71]  Terence Tao,et al.  The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.

[72]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[73]  Nolan R. Wallach,et al.  Geometric Invariant Theory: Over the Real and Complex Numbers , 2017 .

[74]  Mohit Singh,et al.  Entropy, optimization and counting , 2013, STOC.

[75]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[76]  Michael Walter,et al.  The Horn inequalities from a geometric point of view , 2016 .

[77]  Nicolas Ressayre,et al.  GIT-cones and quivers , 2009, 0903.1202.

[78]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[79]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[80]  Linda Ness,et al.  A Stratification of the Null Cone Via the Moment Map , 1984 .

[81]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Equivalence between Blackbox Derandomization of Polynomial Identity Testing and Derandomization of Noether's Normalization Lemma , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[82]  Harm Derksen,et al.  Polynomial bounds for rings of invariants , 2000 .

[83]  C. Woodward,et al.  Moment maps and geometric invariant theory , 2009, 0912.1132.

[84]  K. Mulmuley,et al.  Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient , 2012 .

[85]  Nisheeth K. Vishnoi,et al.  Computing Maximum Entropy Distributions Everywhere , 2017, ArXiv.

[86]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[87]  Michel Van den Bergh,et al.  Semi-invariants of quivers for arbitrary dimension vectors , 1999 .

[88]  Shlomo Sternberg,et al.  Convexity properties of the moment mapping. II , 1982 .

[89]  Harm Derksen,et al.  Computational Invariant Theory , 2002 .

[90]  Avi Wigderson,et al.  Much Faster Algorithms for Matrix Scaling , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[91]  Aleksander Madry,et al.  Matrix Scaling and Balancing via Box Constrained Newton's Method and Interior Point Methods , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[92]  Michael Walter,et al.  Inequalities for Moment Cones of Finite-Dimensional Representations , 2014, 1410.8144.

[93]  Amir Shpilka,et al.  Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing , 2013, APPROX-RANDOM.

[94]  Jesús A. De Loera,et al.  On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..

[95]  Peter Bürgisser,et al.  Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory , 2017, ITCS.

[96]  Velleda Baldoni,et al.  Horn conditions for Schubert positions of general quiver subrepresentations , 2019 .

[97]  Harm Derksen,et al.  Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients , 2000 .

[98]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[99]  P. Newstead Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .

[100]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.