Performance Bounds in ${\cal H}_{\infty}$ Optimal Control for Stable SISO Plants With Arbitrary Relative Degree

This note deals with performance bounds for the H infin-optimal control of discrete-time LTI plants. The case studied corresponds to stable scalar plants with arbitrary relative degree but no finite non-minimum phase zero. By using Nehari's Theorem and a reformulation of the standard Youla Parameterization a closed-form expression for the characteristic polynomial of the associated eigenvalue problem is obtained. Also, we derive an analytic expression for the optimal H infin cost as a function of the plant relative degree.

[1]  David Q. Mayne,et al.  Feedback limitations in nonlinear systems: from Bode integrals to cheap control , 1999, IEEE Trans. Autom. Control..

[2]  Edward J. Davison,et al.  Performance limitations of non-minimum phase systems in the servomechanism problem, , 1993, Autom..

[3]  S. Skogestad,et al.  Effect of RHP zeros and poles on the sensitivity functions in multivariable systems , 1998 .

[4]  J. Freudenberg,et al.  Right half plane poles and zeros and design tradeoffs in feedback systems , 1985 .

[5]  L. Qiu,et al.  Tracking performance limitations in LTI multivariable discrete-time systems , 2002 .

[6]  J. Freudenberg,et al.  Frequency Domain Properties of Scalar and Multivariable Feedback Systems , 1988 .

[7]  Graham C. Goodwin,et al.  Fundamental limits in sensitivity minimization: multiple-input-multiple-output (MIMO) plants , 2001, IEEE Trans. Autom. Control..

[8]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[9]  K. Glover,et al.  Robust stabilization of normalized coprime factor plant descriptions with H/sub infinity /-bounded uncertainty , 1989 .

[10]  Li Qiu,et al.  Limitations on maximal tracking accuracy. 2. Tracking sinusoidal and ramp signals , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[11]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[12]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[13]  Shinji Hara,et al.  Properties of sensitivity and complementary sensitivity functions in single-input single-output digital control systems , 1988 .

[14]  M. E. Salgado,et al.  Performance bounds for feedback control of non-minimum phase MIMO systems with arbitrary delay structure , 2005 .

[15]  Jie Chen Integral constraints and performance limits on complementary sensitivity: Discrete-time systems , 2000 .

[16]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[17]  M. E. Halpern,et al.  Preview tracking for discrete-time SISO systems , 1994, IEEE Trans. Autom. Control..

[18]  K. Glover,et al.  Robust stabilization of normalized coprime factor plant descriptions , 1990 .

[19]  Mario E. Salgado,et al.  Achievable performance limitations for SISO plants with pole location constraints , 2006 .

[20]  R. Firoozian Feedback Control Theory , 2009 .

[21]  P. Khargonekar,et al.  Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .

[22]  Jie Chen,et al.  Logarithmic integrals, interpolation bounds, and performance limitations in MIMO feedback systems , 2000, IEEE Trans. Autom. Control..

[23]  G. Goodwin,et al.  Cost of cheap decoupled control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).