Interpreting fMRI data: maps, modules and dimensions

Neuroimaging research over the past decade has revealed a detailed picture of the functional organization of the human brain. Here we focus on two fundamental questions that are raised by the detailed mapping of sensory and cognitive functions and illustrate these questions with findings from the object-vision pathway. First, are functionally specific regions that are located close together best understood as distinct cortical modules or as parts of a larger-scale cortical map? Second, what functional properties define each cortical map or module? We propose a model in which overlapping continuous maps of simple features give rise to discrete modules that are selective for complex stimuli.

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[3]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[4]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[5]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[6]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[8]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[10]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[11]  J. Fodor,et al.  The Modularity of Mind: An Essay on Faculty Psychology , 1984 .

[12]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[13]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[14]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[15]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[16]  A. Young,et al.  Configurational Information in Face Perception , 1987, Perception.

[17]  J. Wagemans,et al.  Modules in vision: a case study of interdisciplinarity in cognitive science. , 1988, Acta psychologica.

[18]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[19]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[21]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[22]  M J Farah,et al.  Second-order relational properties and the inversion effect: Testing a theory of face perception , 1991, Perception & psychophysics.

[23]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[26]  Robert L. Goldstone Influences of categorization on perceptual discrimination. , 1994, Journal of experimental psychology. General.

[27]  Robert L. Goldstone Influences of categorization on perceptual discrimination. , 1994 .

[28]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[29]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[30]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[31]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Farah,et al.  What causes the face inversion effect? , 1995, Journal of experimental psychology. Human perception and performance.

[33]  N. Logothetis,et al.  Psychophysical and physiological evidence for viewer-centered object representations in the primate. , 1995, Cerebral cortex.

[34]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[35]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[36]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[37]  J. Mazziotta,et al.  A Locus in Human Extrastriate Cortex for Visual Shape Analysis , 1997, Journal of Cognitive Neuroscience.

[38]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[39]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[40]  M. Farah,et al.  What is "special" about face perception? , 1998, Psychological review.

[41]  S. Edelman,et al.  Toward direct visualization of the internal shape representation space by fMRI , 1998, Psychobiology.

[42]  S Edelman,et al.  Representation is representation of similarities , 1996, Behavioral and Brain Sciences.

[43]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[44]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[45]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[47]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[48]  Ravi S. Menon,et al.  An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings , 2000, Current Biology.

[49]  Leslie G. Ungerleider,et al.  Object-form topology in the ventral temporal lobe Response to I. Gauthier (2000) , 2000, Trends in Cognitive Sciences.

[50]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[51]  R. Vogels,et al.  Spatial sensitivity of macaque inferior temporal neurons , 2000, The Journal of comparative neurology.

[52]  M. Tarr,et al.  FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise , 2000, Nature Neuroscience.

[53]  I. Gauthier,et al.  Expertise for cars and birds recruits brain areas involved in face recognition , 2000, Nature Neuroscience.

[54]  N. Kanwisher Domain specificity in face perception , 2000, Nature Neuroscience.

[55]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[56]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[57]  Early development of a somatosensory fovea: a head start in the cortical space race? , 2001, Nature Neuroscience.

[58]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[59]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[60]  N. Kanwisher,et al.  The Human Body , 2001 .

[61]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[62]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[63]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[64]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[65]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[66]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[67]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[68]  Ulf Knoblich,et al.  Stimulus Simplification and Object Representation: A Modeling Study , 2002 .

[69]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[70]  R. Savoy Functional Magnetic Resonance Imaging (fMRI) , 2002 .

[71]  David C. Van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[72]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[73]  H. Bülthoff,et al.  Categorical perception of familiar objects , 2002, Cognition.

[74]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[75]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[76]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[77]  Johan Wagemans,et al.  The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. , 2003, Journal of experimental psychology. General.

[78]  M. Volgushev,et al.  Independence of visuotopic representation and orientation map in the visual cortex of the cat , 2003, The European journal of neuroscience.

[79]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[80]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[81]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[82]  R Saxe,et al.  People thinking about thinking people The role of the temporo-parietal junction in “theory of mind” , 2003, NeuroImage.

[83]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[84]  I. Biederman,et al.  Shape Tuning in Macaque Inferior Temporal Cortex , 2003, The Journal of Neuroscience.

[85]  Paul E. Downing,et al.  Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex , 2003, Neuron.

[86]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[87]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[88]  Bruce D. McCandliss,et al.  The visual word form area: expertise for reading in the fusiform gyrus , 2003, Trends in Cognitive Sciences.

[89]  H. Bülthoff,et al.  Representation of the perceived 3-D object shape in the human lateral occipital complex. , 2003, Cerebral cortex.

[90]  M. Riesenhuber,et al.  Face processing in humans is compatible with a simple shape–based model of vision , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[91]  Andreas Kleinschmidt,et al.  Scale invariant adaptation in fusiform face-responsive regions , 2004, NeuroImage.

[92]  Stephen José Hanson,et al.  Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? , 2004, NeuroImage.

[93]  N. Kanwisher,et al.  Face perception: domain specific, not process specific. , 2004, Neuron.

[94]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[95]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[96]  N. Swindale,et al.  How different feature spaces may be represented in cortical maps , 2004, Network.

[97]  A. Treves,et al.  Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain , 2005, Nature Neuroscience.

[98]  Luiz Pessoa,et al.  Quantitative prediction of perceptual decisions during near-threshold fear detection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[99]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[100]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Raymond J. Dolan,et al.  Familiarity enhances invariance of face representations in human ventral visual cortex: fMRI evidence , 2005, NeuroImage.

[102]  Gilles Pourtois,et al.  Portraits or People? Distinct Representations of Face Identity in the Human Visual Cortex , 2005, Journal of Cognitive Neuroscience.

[103]  Fuqiang Zhao,et al.  Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution , 2005, NeuroImage.

[104]  I. Biederman,et al.  Representation of regular and irregular shapes in macaque inferotemporal cortex. , 2005, Cerebral cortex.

[105]  Uta Frith,et al.  Theory of mind , 2001, Current Biology.

[106]  Dezhe Z. Jin,et al.  The Coordinated Mapping of Visual Space and Response Features in Visual Cortex , 2005, Neuron.

[107]  Perceived similarity between objects of the same category and prototypicality gradients in the lateral occipital complex , 2005 .

[108]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[109]  H. Wilson,et al.  fMRI evidence for the neural representation of faces , 2005, Nature Neuroscience.

[110]  Yaoda Xu Revisiting the role of the fusiform face area in visual expertise. , 2005, Cerebral cortex.

[111]  Rebecca F. Schwarzlose,et al.  Separate Face and Body Selectivity on the Fusiform Gyrus , 2005, The Journal of Neuroscience.

[112]  I. Biederman,et al.  Tuning for shape dimensions in macaque inferior temporal cortex , 2005, The European journal of neuroscience.

[113]  Frank Tong,et al.  Human ventral temporal areas contain flexible position-invariant information about subordinate-level objects , 2005 .

[114]  Tanya I. Baker,et al.  Cortical maps of separable tuning properties predict population responses to complex visual stimuli. , 2005, Journal of neurophysiology.

[115]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[116]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[117]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[118]  N. Kanwisher,et al.  Discrimination Training Alters Object Representations in Human Extrastriate Cortex , 2006, The Journal of Neuroscience.

[119]  T. Aflalo,et al.  Possible Origins of the Complex Topographic Organization of Motor Cortex: Reduction of a Multidimensional Space onto a Two-Dimensional Array , 2006, The Journal of Neuroscience.

[120]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[121]  I. Biederman,et al.  Neural evidence for intermediate representations in object recognition , 2006, Vision Research.

[122]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[123]  G. Orban,et al.  Selectivity of Neuronal Adaptation Does Not Match Response Selectivity: A Single-Cell Study of the fMRI Adaptation Paradigm , 2006, Neuron.

[124]  N. Kanwisher,et al.  The fusiform face area: a cortical region specialized for the perception of faces , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[125]  K. Grill-Spector,et al.  High-resolution imaging reveals highly selective nonface clusters in the fusiform face area , 2006, Nature Neuroscience.

[126]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[127]  M. Riesenhuber,et al.  Evaluation of a Shape-Based Model of Human Face Discrimination Using fMRI and Behavioral Techniques , 2006, Neuron.

[128]  N. Kanwisher,et al.  Location and spatial profile of category‐specific regions in human extrastriate cortex , 2006, Human brain mapping.

[129]  Alison J. Wiggett,et al.  Behavioral / Systems / Cognitive Functional Magnetic Resonance Imaging Investigation of Overlapping Lateral Occipitotemporal Activations Using Multi-Voxel Pattern Analysis , 2006 .

[130]  N. Kanwisher,et al.  Visual word processing and experiential origins of functional selectivity in human extrastriate cortex , 2007, Proceedings of the National Academy of Sciences.

[131]  K. Grill-Spector,et al.  Differential development of high-level visual cortex correlates with category-specific recognition memory , 2007, Nature Neuroscience.

[132]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[133]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[134]  P. Downing,et al.  The neural basis of visual body perception , 2007, Nature Reviews Neuroscience.

[135]  Rachel A Robbins,et al.  No face-like processing for objects-of-expertise in three behavioural tasks , 2007, Cognition.

[136]  Alison J. Wiggett,et al.  Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. , 2007, Journal of neurophysiology.

[137]  S. Ullman Object recognition and segmentation by a fragment-based hierarchy , 2007, Trends in Cognitive Sciences.

[138]  Bradford Z. Mahon,et al.  Action-Related Properties Shape Object Representations in the Ventral Stream , 2007, Neuron.

[139]  B. Wandell,et al.  Differential sensitivity to words and shapes in ventral occipito-temporal cortex. , 2007, Cerebral cortex.

[140]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[141]  N. Kanwisher,et al.  Can generic expertise explain special processing for faces? , 2007, Trends in Cognitive Sciences.

[142]  Russell A. Epstein,et al.  Position selectivity in scene- and object-responsive occipitotemporal regions. , 2007, Journal of neurophysiology.

[143]  M. Riesenhuber,et al.  Categorization Training Results in Shape- and Category-Selective Human Neural Plasticity , 2007, Neuron.

[144]  N. Kanwisher,et al.  Does the fusiform face area contain subregions highly selective for nonfaces? , 2007, Nature Neuroscience.

[145]  R. Dolan,et al.  Fmri activity patterns in human loc carry information about object exemplars within category , 2008 .

[146]  A. Roe,et al.  Cerebral Cortex Advance Access published June 18, 2007 Functional Organization of Color Domains in V1 and V2 of Macaque Monkey Revealed by Optical Imaging , 2022 .

[147]  Raymond J. Dolan,et al.  fMRI Activity Patterns in Human LOC Carry Information about Object Exemplars within Category , 2008, Journal of Cognitive Neuroscience.