Activation in Posterior Superior Temporal Sulcus Parallels Parameter Inducing the Percept of Animacy

[1]  Yemima Ben-menahem,et al.  The Face of Perception , 2005 .

[2]  Mitsuo Kawato,et al.  Activation of the Human Superior Temporal Gyrus during Observation of Goal Attribution by Intentional Objects , 2004, Journal of Cognitive Neuroscience.

[3]  Dana Samson,et al.  Left temporoparietal junction is necessary for representing someone else's belief , 2004, Nature Neuroscience.

[4]  M. Hasselmo,et al.  Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey , 2004, Experimental Brain Research.

[5]  R Saxe,et al.  People thinking about thinking people The role of the temporo-parietal junction in “theory of mind” , 2003, NeuroImage.

[6]  A. Meltzoff,et al.  The detection of contingency and animacy from simple animations in the human brain. , 2003, Cerebral cortex.

[7]  T. Allison,et al.  Brain Activity Evoked by the Perception of Human Walking: Controlling for Meaningful Coherent Motion , 2003, The Journal of Neuroscience.

[8]  C. Frith,et al.  Development and neurophysiology of mentalizing. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  H. Bekkering,et al.  Action generation and action perception in imitation: an instance of the ideomotor principle. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  R. Adolphs Cognitive neuroscience: Cognitive neuroscience of human social behaviour , 2003, Nature Reviews Neuroscience.

[12]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[13]  P. Skudlarski,et al.  The role of the fusiform face area in social cognition: implications for the pathobiology of autism. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  Susan C. Johnson Detecting agents. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  J. Mazziotta,et al.  Modulation of cortical activity during different imitative behaviors. , 2003, Journal of neurophysiology.

[16]  John E. Opfer,et al.  Identifying living and sentient kinds from dynamic information: the case of goal-directed versus aimless autonomous movement in conceptual change , 2002, Cognition.

[17]  Ronald A. Rensink,et al.  Active versus passive processing of biological motion , 2002, Perception.

[18]  Michael Erb,et al.  Object-selective responses in the human motion area MT/MST , 2002, Nature Neuroscience.

[19]  Pascal Boyer,et al.  How the brain perceives causality: an event-related fMRI study , 2001, Neuroreport.

[20]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[21]  J C Mazziotta,et al.  Reafferent copies of imitated actions in the right superior temporal cortex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Ivan Toni,et al.  Movement Preparation and Motor Intention , 2001, NeuroImage.

[23]  C. Frith,et al.  Movement and Mind: A Functional Imaging Study of Perception and Interpretation of Complex Intentional Movement Patterns , 2000, NeuroImage.

[24]  Patrice D. Tremoulet,et al.  Perceptual causality and animacy , 2000, Trends in Cognitive Sciences.

[25]  Patrice D. Tremoulet,et al.  Perception of Animacy from the Motion of a Single Object , 2000, Perception.

[26]  R. Turner,et al.  Optimization of 3-D MP-RAGE Sequences for Structural Brain Imaging , 2000, NeuroImage.

[27]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[28]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[29]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[30]  Karl J. Friston,et al.  Robust Smoothness Estimation in Statistical Parametric Maps Using Standardized Residuals from the General Linear Model , 1999, NeuroImage.

[31]  C. Frith,et al.  Interacting minds--a biological basis. , 1999, Science.

[32]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[33]  L L Chao,et al.  Are face-responsive regions selective only for faces? , 1999, Neuroreport.

[34]  P. Todd,et al.  How motion reveals intention: Categorizing social interactions , 1999 .

[35]  H. Duvernoy The Human Brain , 1999, Springer Vienna.

[36]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[37]  Karl J. Friston,et al.  The functional anatomy of attention to visual motion. A functional MRI study. , 1998, Brain : a journal of neurology.

[38]  A. Damasio,et al.  A neural basis for the retrieval of conceptual knowledge , 1997, Neuropsychologia.

[39]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[40]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[41]  A. Damasio,et al.  A neural basis for lexical retrieval , 1996, Nature.

[42]  Richard D. Hichwa,et al.  A neural basis for lexical retrieval , 1996, Nature.

[43]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[44]  T. Allison,et al.  Face-sensitive regions in human extrastriate cortex studied by functional MRI. , 1995, Journal of neurophysiology.

[45]  D. Perani,et al.  Different neural systems for the recognition of animals and man‐made tools , 1995, Neuroreport.

[46]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[48]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[49]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[50]  W. Dittrich Action Categories and the Perception of Biological Motion , 1993, Perception.

[51]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[52]  E. Rolls,et al.  Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey , 1985, Brain Research.

[53]  A. J. Mistlin,et al.  Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: A preliminary report , 1985, Behavioural Brain Research.

[54]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[55]  J. N. Bassili Temporal and spatial contingencies in the perception of social events , 1976 .

[56]  H. Laborit,et al.  [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.

[57]  F. Heider,et al.  An experimental study of apparent behavior , 1944 .