Model-Based Domain Generalization

We consider the problem of domain generalization, in which a predictor is trained on data drawn from a family of related training domains and tested on a distinct and unseen test domain. While a variety of approaches have been proposed for this setting, it was recently shown that no existing algorithm can consistently outperform empirical risk minimization (ERM) over the training domains. To this end, in this paper we propose a novel approach for the domain generalization problem called Model-Based Domain Generalization. In our approach, we first use unlabeled data from the training domains to learn multi-modal domain transformation models that map data from one training domain to any other domain. Next, we propose a constrained optimization-based formulation for domain generalization which enforces that a trained predictor be invariant to distributional shifts under the underlying domain transformation model. Finally, we propose a novel algorithmic framework for efficiently solving this constrained optimization problem. In our experiments, we show that this approach outperforms both ERM and domain generalization algorithms on numerous well-known, challenging datasets, including WILDS, PACS, and ImageNet. In particular, our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.

[1]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[2]  Koby Crammer,et al.  Analysis of Representations for Domain Adaptation , 2006, NIPS.

[3]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[4]  Pieter Abbeel,et al.  Robust Reinforcement Learning using Adversarial Populations , 2020, ArXiv.

[5]  Andre Esteva,et al.  A guide to deep learning in healthcare , 2019, Nature Medicine.

[6]  Provable tradeoffs in adversarially robust classification , 2020, ArXiv.

[7]  Benjamin Recht,et al.  Measuring Robustness to Natural Distribution Shifts in Image Classification , 2020, NeurIPS.

[8]  Anirudha Majumdar,et al.  Invariant Policy Optimization: Towards Stronger Generalization in Reinforcement Learning , 2020, ArXiv.

[9]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[10]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[11]  Shiqi Wang,et al.  Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization , 2020, NeurIPS.

[12]  Fabio Maria Carlucci,et al.  Domain Generalization by Solving Jigsaw Puzzles , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Wojciech Samek,et al.  Achieving Generalizable Robustness of Deep Neural Networks by Stability Training , 2019, GCPR.

[14]  David Lopez-Paz,et al.  In Search of Lost Domain Generalization , 2020, ICLR.

[15]  Luc Van Gool,et al.  ComboGAN: Unrestrained Scalability for Image Domain Translation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[16]  Amit Dhurandhar,et al.  Invariant Risk Minimization Games , 2020, ICML.

[17]  Li Yao,et al.  A Strong Baseline for Domain Adaptation and Generalization in Medical Imaging , 2019, ArXiv.

[18]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[19]  MarchandMario,et al.  Domain-adversarial training of neural networks , 2016 .

[20]  Balaji Lakshminarayanan,et al.  AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty , 2020, ICLR.

[21]  Mihaela van der Schaar,et al.  Accounting for Unobserved Confounding in Domain Generalization , 2020 .

[22]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[23]  Po-Sen Huang,et al.  Achieving Robustness in the Wild via Adversarial Mixing With Disentangled Representations , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Mengjie Zhang,et al.  Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Kostas Daniilidis,et al.  Learning SO(3) Equivariant Representations with Spherical CNNs , 2017, International Journal of Computer Vision.

[26]  Fabio Maria Carlucci,et al.  From Source to Target and Back: Symmetric Bi-Directional Adaptive GAN , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Sanja Fidler,et al.  Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Mingsheng Long,et al.  Learning to Detect Open Classes for Universal Domain Adaptation , 2020, ECCV.

[29]  Jure Leskovec,et al.  WILDS: A Benchmark of in-the-Wild Distribution Shifts , 2021, ICML.

[30]  Sunita Sarawagi,et al.  Efficient Domain Generalization via Common-Specific Low-Rank Decomposition , 2020, ICML.

[31]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[33]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[34]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[35]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[36]  Eric P. Xing,et al.  Learning Robust Representations by Projecting Superficial Statistics Out , 2018, ICLR.

[37]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[38]  Edgar Dobriban,et al.  Invariance reduces Variance: Understanding Data Augmentation in Deep Learning and Beyond , 2019, ArXiv.

[39]  Donald A. Adjeroh,et al.  Unified Deep Supervised Domain Adaptation and Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[40]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[41]  Barbara Caputo,et al.  Best Sources Forward: Domain Generalization through Source-Specific Nets , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[42]  Yongxin Yang,et al.  Learning to Generalize: Meta-Learning for Domain Generalization , 2017, AAAI.

[43]  Alejandro Ribeiro,et al.  Probably Approximately Correct Constrained Learning , 2020, NeurIPS.

[44]  Dong Xu,et al.  Visual recognition by learning from web data: A weakly supervised domain generalization approach , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Soheil Feizi,et al.  FOCUS: Familiar Objects in Common and Uncommon Settings , 2021, ArXiv.

[46]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[47]  Bingbing Ni,et al.  Adversarial Domain Adaptation with Domain Mixup , 2019, AAAI.

[48]  José Miguel Hernández-Lobato,et al.  Nonlinear Invariant Risk Minimization: A Causal Approach , 2021, ArXiv.

[49]  George J. Pappas,et al.  Model-Based Robust Deep Learning , 2020, ArXiv.

[50]  Jung-Woo Ha,et al.  StarGAN v2: Diverse Image Synthesis for Multiple Domains , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Yunwen Lei,et al.  A Generalization Error Bound for Multi-class Domain Generalization , 2019, ArXiv.

[52]  Gilles Blanchard,et al.  Domain Generalization by Marginal Transfer Learning , 2017, J. Mach. Learn. Res..

[53]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[54]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[55]  Amit Dhurandhar,et al.  Empirical or Invariant Risk Minimization? A Sample Complexity Perspective , 2020, ArXiv.

[56]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Gilles Blanchard,et al.  Generalizing from Several Related Classification Tasks to a New Unlabeled Sample , 2011, NIPS.

[58]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[59]  D. Song,et al.  The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[60]  Mengjie Zhang,et al.  Domain Generalization for Object Recognition with Multi-task Autoencoders , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[61]  Bernhard Schölkopf,et al.  On causal and anticausal learning , 2012, ICML.

[62]  Tyler Lu,et al.  Impossibility Theorems for Domain Adaptation , 2010, AISTATS.

[63]  Aleksander Madry,et al.  BREEDS: Benchmarks for Subpopulation Shift , 2020, ICLR.

[64]  D. Tao,et al.  Deep Domain Generalization via Conditional Invariant Adversarial Networks , 2018, ECCV.

[65]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[66]  Ioannis Mitliagkas,et al.  Adversarial target-invariant representation learning for domain generalization , 2019, ArXiv.

[67]  Rama Chellappa,et al.  Visual Domain Adaptation: A survey of recent advances , 2015, IEEE Signal Processing Magazine.

[68]  David J. Kriegman,et al.  Image to Image Translation for Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[69]  Alexander D'Amour,et al.  On Robustness and Transferability of Convolutional Neural Networks , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Yongxin Yang,et al.  Deeper, Broader and Artier Domain Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[71]  Vijay Kumar,et al.  Approximating Explicit Model Predictive Control Using Constrained Neural Networks , 2018, 2018 Annual American Control Conference (ACC).

[72]  Lincan Zou,et al.  Improve Unsupervised Domain Adaptation with Mixup Training , 2020, ArXiv.

[73]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[74]  Tao Xiang,et al.  Domain Generalization: A Survey , 2021, ArXiv.

[75]  Andrew Slavin Ross,et al.  Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients , 2017, AAAI.

[76]  Fabio Roli,et al.  Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning , 2018, CCS.

[77]  Anders Krogh,et al.  A Simple Weight Decay Can Improve Generalization , 1991, NIPS.

[78]  Neil D. Lawrence,et al.  Dataset Shift in Machine Learning , 2009 .

[79]  Miguel A. Goberna,et al.  Recent contributions to linear semi-infinite optimization , 2017, 4OR.

[80]  Wei Zhou,et al.  Feature-Critic Networks for Heterogeneous Domain Generalization , 2019, ICML.

[81]  Vikas Singh,et al.  Constrained Deep Learning using Conditional Gradient and Applications in Computer Vision , 2018, ArXiv.

[82]  Gabriela Csurka,et al.  Deep Visual Domain Adaptation , 2020, 2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).

[83]  E. Stein,et al.  Functional Analysis: Introduction to Further Topics in Analysis , 2011 .

[84]  Nathan Srebro,et al.  Does Invariant Risk Minimization Capture Invariance? , 2021, ArXiv.

[85]  Alexander J. Smola,et al.  Detecting and Correcting for Label Shift with Black Box Predictors , 2018, ICML.

[86]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[87]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[88]  Masanori Koyama,et al.  Out-of-Distribution Generalization with Maximal Invariant Predictor , 2020, ArXiv.

[89]  Tatsuya Harada,et al.  Domain Generalization Using a Mixture of Multiple Latent Domains , 2019, AAAI.

[90]  Santosh S. Venkatesh,et al.  The Theory of Probability: Explorations and Applications , 2012 .

[91]  Dong Yang,et al.  When Unseen Domain Generalization is Unnecessary? Rethinking Data Augmentation , 2019, ArXiv.

[92]  Aleksander Madry,et al.  Noise or Signal: The Role of Image Backgrounds in Object Recognition , 2020, ICLR.

[93]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[94]  J. Andrew Bagnell,et al.  Robust Supervised Learning , 2005, AAAI.

[95]  Eric P. Xing,et al.  Real-to-Virtual Domain Unification for End-to-End Autonomous Driving , 2018, ECCV.

[96]  Siddhartha Chaudhuri,et al.  Generalizing Across Domains via Cross-Gradient Training , 2018, ICLR.

[97]  Alex ChiChung Kot,et al.  Domain Generalization with Adversarial Feature Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[98]  Barbara Caputo,et al.  Robust Place Categorization With Deep Domain Generalization , 2018, IEEE Robotics and Automation Letters.

[99]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[100]  Sahil Singla,et al.  Causal ImageNet: How to discover spurious features in Deep Learning? , 2021, ArXiv.

[101]  Donggeun Yoo,et al.  Reducing Domain Gap via Style-Agnostic Networks , 2019, ArXiv.

[102]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Perturbations , 2018, ICLR.

[103]  Alejandro Ribeiro,et al.  The Empirical Duality Gap of Constrained Statistical Learning , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[104]  Philip David,et al.  Domain Adaptation for Semantic Segmentation of Urban Scenes , 2017 .

[105]  Daniel C. Castro,et al.  Domain Generalization via Model-Agnostic Learning of Semantic Features , 2019, NeurIPS.

[106]  Yutaka Matsuo,et al.  Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization , 2019, ECML/PKDD.

[107]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, ICML.

[108]  Jan Kautz,et al.  Multimodal Unsupervised Image-to-Image Translation , 2018, ECCV.

[109]  Gabriela Csurka,et al.  Domain Adaptation for Visual Applications: A Comprehensive Survey , 2017, ArXiv.

[110]  David Rolnick,et al.  DC3: A learning method for optimization with hard constraints , 2021, ICLR.

[111]  Tao Xiang,et al.  Deep Domain-Adversarial Image Generation for Domain Generalisation , 2020, AAAI.

[112]  Behnam Neyshabur,et al.  Understanding the Failure Modes of Out-of-Distribution Generalization , 2021, ICLR.

[113]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[114]  Zhenguo Li,et al.  OoD-Bench: Benchmarking and Understanding Out-of-Distribution Generalization Datasets and Algorithms , 2021, ArXiv.

[115]  Xi Peng,et al.  Learning to Learn Single Domain Generalization , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  Luc Van Gool,et al.  A Three-Player GAN: Generating Hard Samples to Improve Classification Networks , 2019, 2019 16th International Conference on Machine Vision Applications (MVA).

[117]  J. Zico Kolter,et al.  Provable defenses against adversarial examples via the convex outer adversarial polytope , 2017, ICML.

[118]  Gaurav S. Sukhatme,et al.  Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic Reinforcement Learning , 2020 .

[119]  Abhimanyu Dubey,et al.  Adaptive Methods for Real-World Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[120]  Trevor Darrell,et al.  Constrained Convolutional Neural Networks for Weakly Supervised Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[121]  Sergey Levine,et al.  Adaptive Risk Minimization: A Meta-Learning Approach for Tackling Group Shift , 2020, ArXiv.

[122]  Philip H.S. Torr,et al.  Gradient Matching for Domain Generalization , 2021, ArXiv.

[123]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[124]  Philip Bachman,et al.  Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data , 2018, ICML.

[125]  Charles Jin,et al.  Manifold Regularization for Adversarial Robustness , 2020, ArXiv.

[126]  Rowan McAllister,et al.  Learning Invariant Representations for Reinforcement Learning without Reconstruction , 2020, ICLR.

[127]  Tao Qin,et al.  Generalizing to Unseen Domains: A Survey on Domain Generalization , 2021, IJCAI.

[128]  Zhangjie Cao,et al.  Open Domain Generalization with Domain-Augmented Meta-Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[129]  Mahdi Eftekhari,et al.  Towards Shape Biased Unsupervised Representation Learning for Domain Generalization , 2019, ArXiv.

[130]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[131]  Eric P. Xing,et al.  Self-Challenging Improves Cross-Domain Generalization , 2020, ECCV.

[132]  Gang Niu,et al.  Does Distributionally Robust Supervised Learning Give Robust Classifiers? , 2016, ICML.

[133]  Pradeep Ravikumar,et al.  The Risks of Invariant Risk Minimization , 2020, ICLR.

[134]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[135]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[136]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[137]  Yang Song,et al.  Improving the Robustness of Deep Neural Networks via Stability Training , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[138]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[139]  Nicu Sebe,et al.  Cross-Domain Car Detection Using Unsupervised Image-to-Image Translation: From Day to Night , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[140]  Lorenzo Rosasco,et al.  Manifold Regularization , 2007 .

[141]  Swami Sankaranarayanan,et al.  MetaReg: Towards Domain Generalization using Meta-Regularization , 2018, NeurIPS.

[142]  David Pfau,et al.  Towards a Definition of Disentangled Representations , 2018, ArXiv.

[143]  Alberto L. Sangiovanni-Vincentelli,et al.  Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization Without Accessing Target Domain Data , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[144]  Fredrik D. Johansson,et al.  Learning Weighted Representations for Generalization Across Designs , 2018, 1802.08598.

[145]  Fabio Roli,et al.  Evasion Attacks against Machine Learning at Test Time , 2013, ECML/PKDD.

[146]  Yun Fu,et al.  Deep Domain Generalization With Structured Low-Rank Constraint , 2018, IEEE Transactions on Image Processing.

[147]  Sahil Singla,et al.  Perceptual Adversarial Robustness: Defense Against Unseen Threat Models , 2020, ICLR.

[148]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[149]  Sridha Sridharan,et al.  Multi-Component Image Translation for Deep Domain Generalization , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[150]  Tianbao Yang,et al.  Learning Attributes Equals Multi-Source Domain Generalization , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[151]  Zhitang Chen,et al.  Domain Generalization via Multidomain Discriminant Analysis , 2019, UAI.

[152]  Yongxin Yang,et al.  Episodic Training for Domain Generalization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[153]  Jasper Snoek,et al.  Likelihood Ratios for Out-of-Distribution Detection , 2019, NeurIPS.

[154]  Yufei Wang,et al.  Heterogeneous Domain Generalization Via Domain Mixup , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[155]  Jakub M. Tomczak,et al.  DIVA: Domain Invariant Variational Autoencoders , 2019, DGS@ICLR.

[156]  J. Zico Kolter,et al.  Learning perturbation sets for robust machine learning , 2020, ICLR.

[157]  Alejandro Ribeiro,et al.  Constrained Learning with Non-Convex Losses , 2021, ArXiv.

[158]  Percy Liang,et al.  Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization , 2019, ArXiv.

[159]  Silvio Savarese,et al.  Generalizing to Unseen Domains via Adversarial Data Augmentation , 2018, NeurIPS.

[160]  Judy Hoffman,et al.  Learning to Balance Specificity and Invariance for In and Out of Domain Generalization , 2020, ECCV.

[161]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[162]  J. Zico Kolter,et al.  OptNet: Differentiable Optimization as a Layer in Neural Networks , 2017, ICML.

[163]  Christos Davatzikos,et al.  Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging , 2020, ArXiv.

[164]  J. Dunning The elephant in the room. , 2013, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[165]  Richard F. Bass,et al.  Real analysis for graduate students , 2011 .

[166]  Christopher Ré,et al.  No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems , 2020, NeurIPS.

[167]  Daniel Cremers,et al.  Homogeneous Linear Inequality Constraints for Neural Network Activations , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[168]  Quoc V. Le,et al.  Randaugment: Practical automated data augmentation with a reduced search space , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).