Synchronous Chaos and Broad Band Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex

Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity. However, analysis of Local Field Potentials (LFPs) across different experiments reveals considerable diversity in the degree of oscillatory behavior of this induced activity. Contrast-dependent power enhancements can indeed occur over a broad band in the gamma frequency range and spectral peaks may not arise at all. Furthermore, even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. We show that the strength of the inter-layer coupling crucially affects this spatiotemporal structure. We predict that layer VI inactivation should induce global changes in the spectral properties of induced LFPs, reflecting their slower temporal decorrelation in the absence of inter-layer feedback. Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed inhibition tend to develop chaos when coupled by sufficiently strong excitation.

[1]  M. A. Smith,et al.  The Role of Correlations in Direction and Contrast Coding in the Primary Visual Cortex , 2007, The Journal of Neuroscience.

[2]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Hansel,et al.  Synchronization and computation in a chaotic neural network. , 1992, Physical review letters.

[4]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[5]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[6]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[7]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Nicolas Brunel,et al.  Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. , 2005, Journal of neurophysiology.

[9]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[10]  David Ferster,et al.  Membrane Potential Synchrony in Primary Visual Cortex during Sensory Stimulation , 2010, Neuron.

[11]  C. Gray,et al.  Dynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization. , 2000, Cerebral cortex.

[12]  Haim Sompolinsky,et al.  Chaos and synchrony in a model of a hypercolumn in visual cortex , 1996, Journal of Computational Neuroscience.

[13]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[14]  K. Tanaka,et al.  Organization of cat visual cortex as investigated by cross-correlation technique. , 1981, Journal of neurophysiology.

[15]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Sven Jahnke,et al.  How Chaotic is the Balanced State? , 2009, Front. Comput. Neurosci..

[17]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[18]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[19]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[20]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[21]  Judith A Hirsch,et al.  Laminar processing in the visual cortical column , 2006, Current Opinion in Neurobiology.

[22]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[23]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[24]  Alexander S. Ecker,et al.  Feature Selectivity of the Gamma-Band of the Local Field Potential in Primate Primary Visual Cortex , 2008, Front. Neurosci..

[25]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.

[26]  S. Grossberg,et al.  Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. , 2003, Cerebral cortex.

[27]  Andrew P Davison,et al.  Reliable Recall of Spontaneous Activity Patterns in Cortical Networks , 2009, The Journal of Neuroscience.

[28]  J. Bolz,et al.  Functional specificity of a long-range horizontal connection in cat visual cortex: a cross-correlation study , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[30]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Germán Mato,et al.  Asynchronous States and the Emergence of Synchrony in Large Networks of Interacting Excitatory and Inhibitory Neurons , 2003, Neural Computation.

[32]  W. Singer,et al.  Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1 , 2009, Cerebral cortex.

[33]  W. Gerstner,et al.  Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. , 2008, Journal of neurophysiology.

[34]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[35]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[36]  C. Gilbert,et al.  Generation of end-inhibition in the visual cortex via interlaminar connections , 1986, Nature.

[37]  Nicolas Brunel,et al.  How Noise Affects the Synchronization Properties of Recurrent Networks of Inhibitory Neurons , 2006, Neural Computation.

[38]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  R. Quian Quiroga,et al.  Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering , 2004, Neural Computation.

[40]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[41]  Xiao-Jing Wang,et al.  Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas , 2010, The Journal of Neuroscience.

[42]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[43]  Christoph Kayser,et al.  Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials , 2004, The European journal of neuroscience.

[44]  David C. Somers,et al.  An Emergent Model of Visual Cortical Orientation Selectivity , 1995 .

[45]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[46]  Nicolas Brunel,et al.  Phase diagrams of sparsely connected networks of excitatory and inhibitory spiking neurons , 2000, Neurocomputing.

[47]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[48]  Nicolas Brunel,et al.  Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons , 2008, PLoS Comput. Biol..

[49]  Nicolas Brunel,et al.  Sparsely synchronized neuronal oscillations. , 2008, Chaos.

[50]  Imre M. Jánosi,et al.  Book Review: "Nonlinear Time Series Analysis, 2nd Edition" by Holger Kantz and Thomas Schreiber , 2004 .

[51]  L. Abbott,et al.  Stimulus-dependent suppression of chaos in recurrent neural networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Carl van Vreeswijk,et al.  Power-Law Input-Output Transfer Functions Explain the Contrast-Response and Tuning Properties of Neurons in Visual Cortex , 2011, PLoS Comput. Biol..

[53]  Wulfram Gerstner,et al.  Extracting non-linear integrate-and-fire models from experimental data using dynamic I–V curves , 2008, Biological Cybernetics.

[54]  Michael Rudolph,et al.  Inferring network activity from synaptic noise , 2004, Journal of Physiology-Paris.

[55]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[56]  J. Bullier,et al.  Cortical mapping of gamma oscillations in areas V1 and V4 of the macaque monkey , 2001, Visual Neuroscience.

[57]  Alex S. Ferecskó,et al.  The fractions of short- and long-range connections in the visual cortex , 2009, Proceedings of the National Academy of Sciences.

[58]  Michael J. Shelley,et al.  LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback , 2010, Journal of Computational Neuroscience.

[59]  F. Takens Detecting strange attractors in turbulence , 1981 .

[60]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[61]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[62]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[63]  D. Hansel,et al.  Temporal decorrelation of collective oscillations in neural networks with local inhibition and long-range excitation. , 2007, Physical review letters.

[64]  A. B. Bonds,et al.  Inactivation of the infragranular striate cortex broadens orientation tuning of supragranular visual neurons in the cat , 2004, Experimental Brain Research.

[65]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[66]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[67]  Gillespie,et al.  Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Michael J. Shelley,et al.  Searching for Temporal Phase Coherence in the Cortical Network with a Time-Frequency Analysis of the Local Field Potential , 2008 .

[69]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  W. Martin Usrey,et al.  Modulation of Gamma-Band Activity Across Local Cortical Circuits , 2009, Front. Integr. Neurosci..

[71]  I. Ohzawa,et al.  Local intracortical connections in the cat's visual cortex: postnatal development and plasticity. , 1994, Journal of neurophysiology.

[72]  Louis Tao,et al.  Orientation selectivity in visual cortex by fluctuation-controlled criticality , 2006, Proceedings of the National Academy of Sciences.

[73]  David Ruelle,et al.  Occurrence of strange Axiom A attractors near quasiperiodic flows on $T^{m}$,$\,m\geq 3$ , 1979 .

[74]  Farran Briggs,et al.  Organizing Principles of Cortical Layer 6 , 2009, Front. Neural Circuits.

[75]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[76]  David Golomb,et al.  The Number of Synaptic Inputs and the Synchrony of Large, Sparse Neuronal Networks , 2000, Neural Computation.

[77]  Kunihiko Kaneko,et al.  Collective Chaos , 1998 .

[78]  C. Gilbert,et al.  Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections. , 1995, Journal of neurophysiology.

[79]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[80]  C. Gray,et al.  Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. , 2000, Cerebral cortex.

[81]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[82]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[83]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[84]  J. Hopfield,et al.  Modeling the olfactory bulb and its neural oscillatory processings , 1989, Biological Cybernetics.

[85]  D. Hansel,et al.  How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs , 2003, The Journal of Neuroscience.

[86]  David Ruelle,et al.  OCCURRENCE OF STRANGE AXIOM A ATTRACTORS NEAR QUASI PERIODIC FLOWS ON TM, M IS GREATER THAN OR EQUAL TO 3 , 1978 .

[87]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[88]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[89]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[90]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[91]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[92]  J. Bullier,et al.  Cross-Correlograms for Neuronal Spike Trains. Different Types of Temporal Correlation in Neocortex, their Origin and Significance , 2000 .

[93]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[94]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[95]  W. Singer,et al.  Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey , 1992, The European journal of neuroscience.

[96]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[97]  A. B. Bonds,et al.  Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. , 2005, Journal of neurophysiology.

[98]  D. Hansel,et al.  Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[100]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[101]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[102]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[103]  Kunihiko Kaneko,et al.  Complex Systems: Chaos and Beyond: A Constructive Approach with Applications in Life Sciences , 2000 .

[104]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[105]  Hansel,et al.  Solvable model of spatiotemporal chaos. , 1993, Physical review letters.

[106]  Michael J Shelley,et al.  Searching for Autocoherence in the Cortical Network with a Time-Frequency Analysis of the Local Field Potential , 2010, The Journal of Neuroscience.

[107]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[108]  D. Hansel,et al.  Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. , 2005, Physical review letters.

[109]  L. Palmer,et al.  Response to Contrast of Electrophysiologically Defined Cell Classes in Primary Visual Cortex , 2003, The Journal of Neuroscience.

[110]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[111]  Melanie R. Bernard,et al.  Deconstruction of Spatial Integrity in Visual Stimulus Detected by Modulation of Synchronized Activity in Cat Visual Cortex , 2008, The Journal of Neuroscience.

[112]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[113]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[114]  Xiao-Jing Wang,et al.  An Integrated Microcircuit Model of Attentional Processing in the Neocortex , 2007, The Journal of Neuroscience.

[115]  H. Tamura,et al.  Horizontal interactions between visual cortical neurones studied by cross‐correlation analysis in the cat. , 1991, The Journal of physiology.

[116]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[117]  J. Malpeli,et al.  Cat area 17. II. Response properties of infragranular layer neurons in the absence of supragranular layer activity. , 1986, Journal of neurophysiology.

[118]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[119]  R. Shapley,et al.  An egalitarian network model for the emergence of simple and complex cells in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[120]  I. Fried,et al.  Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI Is Related to Interneuronal Correlations , 2007, Current Biology.

[121]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[122]  Peter Dayan,et al.  Computational Differences between Asymmetrical and Symmetrical Networks , 1998, NIPS.

[123]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[124]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[125]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[126]  P. Robinson,et al.  Mechanisms of cortical electrical activity and emergence of gamma rhythm. , 2000, Journal of theoretical biology.

[127]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[128]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[129]  Kunihiko Kaneko,et al.  Complex Systems: Chaos and Beyond , 2001 .

[130]  Arthur Gretton,et al.  Low-Frequency Local Field Potentials and Spikes in Primary Visual Cortex Convey Independent Visual Information , 2008, The Journal of Neuroscience.

[131]  F. Takens,et al.  Occurrence of strange AxiomA attractors near quasi periodic flows onTm,m≧3 , 1978 .

[132]  Nicolas Brunel,et al.  Rate Models with Delays and the Dynamics of Large Networks of Spiking Neurons(Oscillation, Chaos and Network Dynamics in Nonlinear Science) , 2006 .

[133]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[134]  A. R. Palmer,et al.  Laminar differences in the response properties of cells in the primary auditory cortex , 2007, Experimental Brain Research.

[135]  M. Carandini,et al.  Local Origin of Field Potentials in Visual Cortex , 2009, Neuron.