A fast online spanner for roadmap construction

This paper introduces a fast weighted streaming spanner algorithm (WSS) that trims edges from roadmaps generated by robot motion planning algorithms such as Probabilistic Roadmap (PRM) and variants (e.g. k-PRM*) as the edges are generated, but before collision detection; no route in the resulting graph is more than a constant factor larger than it would have been in the original roadmap. Experiments applying WSS to k-PRM* were conducted, and the results show our algorithm’s capability to filter graphs with up to 1.28 million vertices, discarding about three-quarters of the edges. Due to the fact that many collision detection steps can be avoided, the combination of WSS and k-PRM* is faster than k-PRM* alone. The paper further presents an online directed spanner algorithm that can be used for systems with non-holonomic constraints, with proof of correctness and experimental results.

[1]  Michael Elkin,et al.  Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners , 2007, TALG.

[2]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[3]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[4]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[5]  Liam Roditty Fully Dynamic Geometric Spanners , 2007, SCG '07.

[6]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[7]  Mark H. Overmars,et al.  Motion Planning for Carlike Robots Using a Probabilistic Learning Approach , 1997, Int. J. Robotics Res..

[8]  Pankaj K. Agarwal,et al.  Sparsification of motion-planning roadmaps by edge contraction , 2013, 2013 IEEE International Conference on Robotics and Automation.

[9]  Michiel H. M. Smid,et al.  Robust geometric spanners , 2012, SoCG '13.

[10]  Joan Feigenbaum,et al.  Graph distances in the streaming model: the value of space , 2005, SODA '05.

[11]  Surender Baswana,et al.  Streaming algorithm for graph spanners - single pass and constant processing time per edge , 2008, Inf. Process. Lett..

[12]  Soumojit Sarkar,et al.  Fully dynamic randomized algorithms for graph spanners , 2012, TALG.

[13]  Devin J. Balkcom,et al.  A fast streaming spanner algorithm for incrementally constructing sparse roadmaps , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Kostas E. Bekris,et al.  Sparse Roadmap Spanners , 2012, WAFR.

[15]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[16]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[17]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[18]  Edith Cohen Fast algorithms for constructing t-spanners and paths with stretch t , 1993, FOCS.

[19]  Nancy M. Amato,et al.  A general framework for sampling on the medial axis of the free space , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[20]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[21]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[22]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[23]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[24]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[25]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[26]  Arnab Bhattacharyya,et al.  Improved Approximation for the Directed Spanner Problem , 2011, ICALP.

[27]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[28]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[29]  Kostas E. Bekris,et al.  Towards small asymptotically near-optimal roadmaps , 2012, 2012 IEEE International Conference on Robotics and Automation.

[30]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[31]  Kostas E. Bekris,et al.  Asymptotically Near-Optimal Is Good Enough for Motion Planning , 2011, ISRR.

[32]  Kostas E. Bekris,et al.  Asymptotically Near-Optimal Planning With Probabilistic Roadmap Spanners , 2013, IEEE Transactions on Robotics.

[33]  P. Giblin Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.

[34]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[35]  Kostas E. Bekris,et al.  Computing spanners of asymptotically optimal probabilistic roadmaps , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Lydia E. Kavraki,et al.  On finding narrow passages with probabilistic roadmap planners , 1998 .

[37]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[38]  Mikkel Thorup,et al.  Roundtrip spanners and roundtrip routing in directed graphs , 2002, SODA '02.