Statistical Algorithms and a Lower Bound for Detecting Planted Cliques

We introduce a framework for proving lower bounds on computational problems over distributions against algorithms that can be implemented using access to a statistical query oracle. For such algorithms, access to the input distribution is limited to obtaining an estimate of the expectation of any given function on a sample drawn randomly from the input distribution rather than directly accessing samples. Most natural algorithms of interest in theory and in practice, for example, moments-based methods, local search, standard iterative methods for convex optimization, MCMC, and simulated annealing, can be implemented in this framework. Our framework is based on, and generalizes, the statistical query model in learning theory [Kearns 1998]. Our main application is a nearly optimal lower bound on the complexity of any statistical query algorithm for detecting planted bipartite clique distributions (or planted dense subgraph distributions) when the planted clique has size O(n1/2 − δ) for any constant δ > 0. The assumed hardness of variants of these problems has been used to prove hardness of several other problems and as a guarantee for security in cryptographic applications. Our lower bounds provide concrete evidence of hardness, thus supporting these assumptions.

[1]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[2]  Quentin Berthet,et al.  Statistical and computational trade-offs in estimation of sparse principal components , 2014, 1408.5369.

[3]  Varun Kanade,et al.  Computational Bounds on Statistical Query Learning , 2012, COLT.

[4]  Shai Ben-David,et al.  Learning with restricted focus of attention , 1993, COLT '93.

[5]  Robert Krauthgamer,et al.  The Probable Value of the Lovász--Schrijver Relaxations for Maximum Independent Set , 2003, SIAM J. Comput..

[6]  Rocco A. Servedio Computational sample complexity and attribute-efficient learning , 1999, STOC '99.

[7]  Shaddin Dughmi,et al.  On the Hardness of Signaling , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[8]  Martin J. Wainwright,et al.  Information-theoretic lower bounds for distributed statistical estimation with communication constraints , 2013, NIPS.

[9]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[10]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[11]  U. Feige,et al.  Finding hidden cliques in linear time , 2009 .

[12]  Stephen A. Vavasis,et al.  Nuclear norm minimization for the planted clique and biclique problems , 2009, Math. Program..

[13]  Vitaly Feldman,et al.  Evolvability from learning algorithms , 2008, STOC.

[14]  Vitaly Feldman Open Problem: The Statistical Query Complexity of Learning Sparse Halfspaces , 2014, COLT.

[15]  Karl Pearson F.R.S. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling , 2009 .

[16]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[17]  Devavrat Shah,et al.  Structure learning of antiferromagnetic Ising models , 2014, NIPS.

[18]  Ari Juels,et al.  Hiding Cliques for Cryptographic Security , 1998, SODA '98.

[19]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[20]  Uriel Feige,et al.  Relations between average case complexity and approximation complexity , 2002, STOC '02.

[21]  Subhash Khot,et al.  Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Gregory Valiant,et al.  Memory, Communication, and Statistical Queries , 2016, COLT.

[23]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[24]  Jeffrey C. Jackson On the Efficiency of Noise-Tolerant PAC Algorithms Derived from Statistical Queries , 2004, Annals of Mathematics and Artificial Intelligence.

[25]  Noga Alon,et al.  Testing k-wise and almost k-wise independence , 2007, STOC '07.

[26]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[27]  Yuval Peres,et al.  Finding Hidden Cliques in Linear Time with High Probability , 2010, Combinatorics, Probability and Computing.

[28]  Santosh S. Vempala,et al.  Statistical Query Algorithms for Mean Vector Estimation and Stochastic Convex Optimization , 2015, SODA.

[29]  Santosh S. Vempala,et al.  Random Tensors and Planted Cliques , 2009, APPROX-RANDOM.

[30]  Avi Wigderson,et al.  Sum-of-squares Lower Bounds for Planted Clique , 2015, STOC.

[31]  Ludek Kucera,et al.  Expected Complexity of Graph Partitioning Problems , 1995, Discret. Appl. Math..

[32]  Alan M. Frieze,et al.  A new approach to the planted clique problem , 2008, FSTTCS.

[33]  Balázs Szörényi Characterizing Statistical Query Learning: Simplified Notions and Proofs , 2009, ALT.

[34]  Amin Coja-Oghlan,et al.  Graph Partitioning via Adaptive Spectral Techniques , 2009, Combinatorics, Probability and Computing.

[35]  Frank McSherry,et al.  Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[36]  Philippe Rigollet,et al.  Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.

[37]  Yishay Mansour,et al.  Weakly learning DNF and characterizing statistical query learning using Fourier analysis , 1994, STOC '94.

[38]  Santosh S. Vempala,et al.  University of Birmingham On the Complexity of Random Satisfiability Problems with Planted Solutions , 2018 .

[39]  Aditya Bhaskara,et al.  Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph , 2011, SODA.

[40]  Andrea Montanari,et al.  Finding Hidden Cliques of Size \sqrt{N/e} in Nearly Linear Time , 2013, ArXiv.

[41]  Andrea Montanari,et al.  Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems , 2015, COLT.

[42]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[43]  Yihong Wu,et al.  Computational Barriers in Minimax Submatrix Detection , 2013, ArXiv.

[44]  Harrison H. Zhou,et al.  Sparse CCA: Adaptive Estimation and Computational Barriers , 2014, 1409.8565.

[45]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[46]  K. Pearson On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling , 1900 .

[47]  Ke Yang,et al.  New Lower Bounds for Statistical Query Learning , 2002, COLT.

[48]  Alan M. Frieze,et al.  A Polynomial-Time Algorithm for Learning Noisy Linear Threshold Functions , 1996, Algorithmica.

[49]  Shai Ben-David,et al.  Learning with Restricted Focus of Attention , 1998, J. Comput. Syst. Sci..

[50]  Sanjeev Arora,et al.  Computational Complexity and Information Asymmetry in Financial Products (Extended Abstract) , 2010, ICS.

[51]  Cynthia Dwork,et al.  Practical privacy: the SuLQ framework , 2005, PODS.

[52]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .

[53]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[54]  Santosh S. Vempala,et al.  A simple polynomial-time rescaling algorithm for solving linear programs , 2004, STOC '04.

[55]  Bruce E. Hajek,et al.  Computational Lower Bounds for Community Detection on Random Graphs , 2014, COLT.

[56]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[57]  Santosh S. Vempala,et al.  An Efficient Re-Scaled Perceptron Algorithm for Conic Systems , 2006, Math. Oper. Res..

[58]  Kunle Olukotun,et al.  Map-Reduce for Machine Learning on Multicore , 2006, NIPS.

[59]  Dan Vilenchik,et al.  Small Clique Detection and Approximate Nash Equilibria , 2009, APPROX-RANDOM.

[60]  Santosh S. Vempala,et al.  Statistical Query Algorithms for Stochastic Convex Optimization , 2015, ArXiv.

[61]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[62]  Aditya Bhaskara,et al.  Detecting high log-densities: an O(n¼) approximation for densest k-subgraph , 2010, STOC '10.

[63]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[64]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[65]  Michael Kearns,et al.  Efficient noise-tolerant learning from statistical queries , 1993, STOC.

[66]  Andrea Montanari,et al.  Finding Hidden Cliques of Size $$\sqrt{N/e}$$N/e in Nearly Linear Time , 2013, Found. Comput. Math..

[67]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[68]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[69]  Sofya Raskhodnikova,et al.  What Can We Learn Privately? , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[70]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[71]  Avi Wigderson,et al.  Public-key cryptography from different assumptions , 2010, STOC '10.

[72]  Vitaly Feldman,et al.  A Complete Characterization of Statistical Query Learning with Applications to Evolvability , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[73]  Vitaly Feldman,et al.  A General Characterization of the Statistical Query Complexity , 2016, COLT.

[74]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[75]  John C. Duchi,et al.  Minimax rates for memory-bounded sparse linear regression , 2015, COLT.

[76]  Robert Krauthgamer,et al.  How hard is it to approximate the best Nash equilibrium? , 2009, SODA.

[77]  Robert Krauthgamer,et al.  Finding and certifying a large hidden clique in a semirandom graph , 2000, Random Struct. Algorithms.

[78]  Tengyuan Liang,et al.  Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix , 2015, 1502.01988.

[79]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[80]  Ke Yang On Learning Correlated Boolean Functions Using Statistical Queries , 2001, ALT.

[81]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..