Compact preference representation and Boolean games

Game theory is a widely used formal model for studying strategical interactions between agents. Boolean games (Harrenstein, Logic in conflict, PhD thesis, 2004; Harrenstein et al., Theoretical Aspects of Rationality and Knowledge, pp. 287–298, San Francisco Morgan Kaufmann, 2001) yield a compact representation of 2-player zero-sum static games with binary preferences: an agent’s strategy consists of a truth assignment of the propositional variables she controls, and a player’s preferences are expressed by a plain propositional formula. These restrictions (2-player, zero-sum, binary preferences) strongly limit the expressivity of the framework. We first generalize the framework to n-player games which are not necessarily zero-sum. We give simple characterizations of Nash equilibria and dominated strategies, and investigate the computational complexity of the associated problems. Then, we relax the last restriction by coupling Boolean games with a representation, namely, CP-nets.

[1]  Johan van Benthem,et al.  Open Problems in Logic and Games , 2005, We Will Show Them!.

[2]  Vincent Conitzer,et al.  Complexity of (iterated) dominance , 2005, EC '05.

[3]  Hector Geffner,et al.  Default reasoning - causal and conditional theories , 1992 .

[4]  Michael Wooldridge,et al.  On the logic of cooperation and propositional control , 2005, Artif. Intell..

[5]  Georg Gottlob,et al.  Pure Nash equilibria: hard and easy games , 2003, TARK '03.

[6]  Pierfrancesco La Mura Game Networks , 2000, UAI.

[7]  Marie-Christine Lagasquie-Schiex,et al.  Compact Preference Representation for Boolean Games , 2006, PRICAI.

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  Stefan Katzenbeisser,et al.  The influence of neighbourhood and choice on the complexity of finding pure Nash equilibria , 2006, Inf. Process. Lett..

[10]  Bruno Zanuttini,et al.  New Polynomial Classes for Logic-Based Abduction , 2003, J. Artif. Intell. Res..

[11]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[12]  Moshe Tennenholtz,et al.  Local-Effect Games , 2003, IJCAI.

[13]  R. Reiter,et al.  Forget It ! , 1994 .

[14]  Ronen I. Brafman,et al.  Reasoning With Conditional Ceteris Paribus Preference Statements , 1999, UAI.

[15]  Wiebe van der Hoek,et al.  Representation and Complexity in Boolean Games , 2004, JELIA.

[16]  Michael L. Littman,et al.  Graphical Models for Game Theory , 2001, UAI.

[17]  Kevin Leyton-Brown,et al.  Computing Nash Equilibria of Action-Graph Games , 2004, UAI.

[18]  Eitan Zemel,et al.  The Complexity of Eliminating Dominated Strategies , 1993, Math. Oper. Res..

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  Jérôme Lang,et al.  Vote and Aggregation in Combinatorial Domains with Structured Preferences , 2007, IJCAI.

[21]  M. Dastani,et al.  ff ectivity and Noncooperative Solution Concepts , 2006 .

[22]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[23]  Marina De Vos,et al.  Choice Logic Programs and Nash Equilibria in Strategic Games , 1999, CSL.

[24]  Daniel Lehmann,et al.  Another perspective on default reasoning , 1995, Annals of Mathematics and Artificial Intelligence.

[25]  E. Kohlberg,et al.  Foundations of Strategic Equilibrium , 1996 .

[26]  Ronen I. Brafman,et al.  Preference‐Based Constrained Optimization with CP‐Nets , 2004, Comput. Intell..

[27]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[28]  Jérôme Lang,et al.  Logical Preference Representation and Combinatorial Vote , 2004, Annals of Mathematics and Artificial Intelligence.

[29]  Cees Witteveen,et al.  Boolean games , 2001 .

[30]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[31]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[32]  David Poole,et al.  The Independent Choice Logic for Modelling Multiple Agents Under Uncertainty , 1997, Artif. Intell..

[33]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[34]  Enrico Giunchiglia,et al.  Nonmonotonic causal theories , 2004, Artif. Intell..

[35]  Daphne Koller,et al.  Multi-Agent Influence Diagrams for Representing and Solving Games , 2001, IJCAI.

[36]  Ronen I. Brafman,et al.  Extended Semantics and Optimization Algorithms for CP‐Networks , 2004, Comput. Intell..

[37]  Pierre Marquis,et al.  Two Forms of Dependence in Propositional Logic: Controllability and Definability , 1998, AAAI/IAAI.

[38]  Norman Y. Foo,et al.  LPOD Answer Sets and Nash Equilibria , 2004, ASIAN.

[39]  Fangzhen Lin,et al.  On strongest necessary and weakest sufficient conditions , 2000, Artif. Intell..

[40]  Jérôme Lang,et al.  Expressive Power and Succinctness of Propositional Languages for Preference Representation , 2004, KR.

[41]  Didier Dubois,et al.  Inconsistency in possibilistic knowledge bases: to live with it or not live with it , 1992 .

[42]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[43]  U. Endriss,et al.  Expressive Power of Weighted Propositional Formulas for Cardinal Preference Modelling Extended Abstract , 2006 .