Sim-to-Real for Robotic Tactile Sensing via Physics-Based Simulation and Learned Latent Projections

Tactile sensing is critical for robotic grasping and manipulation of objects under visual occlusion. However, in contrast to simulations of robot arms and cameras, current simulations of tactile sensors have limited accuracy, speed, and utility. In this work, we develop an efficient 3D finite element method (FEM) model of the SynTouch BioTac sensor using an open-access, GPU-based robotics simulator. Our simulations closely reproduce results from an experimentally-validated model in an industry-standard, CPU-based simulator, but at 75x the speed. We then learn latent representations for simulated BioTac deformations and real-world electrical output through self-supervision, as well as projections between the latent spaces using a small supervised dataset. Using these learned latent projections, we accurately synthesize real-world BioTac electrical output and estimate contact patches, both for unseen contact interactions. This work contributes an efficient, freely-accessible FEM model of the BioTac and comprises one of the first efforts to combine self-supervision, cross-modal transfer, and sim-to-real transfer for tactile sensors.

[1]  Greg Turk,et al.  Preparing for the Unknown: Learning a Universal Policy with Online System Identification , 2017, Robotics: Science and Systems.

[2]  Jianwei Zhang,et al.  Simulation of the SynTouch BioTac Sensor , 2018, IAS.

[3]  Isabella Huang,et al.  A Depth Camera-Based Soft Fingertip Device for Contact Region Estimation and Perception-Action Coupling , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[4]  Bohan Wu,et al.  MAT: Multi-Fingered Adaptive Tactile Grasping via Deep Reinforcement Learning , 2019, CoRL.

[5]  Raffaello D'Andrea,et al.  Design, Motivation and Evaluation of a Full-Resolution Optical Tactile Sensor , 2019, Sensors.

[6]  Afsoon Afzal,et al.  A Study on the Challenges of Using Robotics Simulators for Testing , 2020, ArXiv.

[7]  Marcin Andrychowicz,et al.  Solving Rubik's Cube with a Robot Hand , 2019, ArXiv.

[8]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[9]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[10]  Oliver Kroemer,et al.  A Review of Tactile Information: Perception and Action Through Touch , 2020, IEEE Transactions on Robotics.

[11]  Michael J. Black,et al.  Generating 3D faces using Convolutional Mesh Autoencoders , 2018, ECCV.

[12]  Sergey Levine,et al.  OmniTact: A Multi-Directional High-Resolution Touch Sensor , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Danica Kragic,et al.  Trends and challenges in robot manipulation , 2019, Science.

[14]  Marwan Mattar,et al.  Unity: A General Platform for Intelligent Agents , 2018, ArXiv.

[15]  Christopher G. Atkeson,et al.  Combining finger vision and optical tactile sensing: Reducing and handling errors while cutting vegetables , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[16]  Yevgen Chebotar,et al.  Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[17]  Danushka Bollegala,et al.  “Touching to See” and “Seeing to Feel”: Robotic Cross-modal Sensory Data Generation for Visual-Tactile Perception , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[18]  Antonio Torralba,et al.  Connecting Touch and Vision via Cross-Modal Prediction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Tucker Hermans,et al.  In-Hand Object-Dynamics Inference Using Tactile Fingertips , 2021, IEEE Transactions on Robotics.

[20]  Jiajun Wu,et al.  See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion , 2019, Science Robotics.

[21]  Stefan Jeschke,et al.  Non-smooth Newton Methods for Deformable Multi-body Dynamics , 2019, ACM Trans. Graph..

[22]  Mabel M. Zhang Necessity for More Realistic Contact Simulation , 2020 .

[23]  Yashraj S. Narang,et al.  STReSSD: Sim-To-Real from Sound for Stochastic Dynamics , 2020, CoRL.

[24]  Hyosang Lee,et al.  Calibrating a Soft ERT-Based Tactile Sensor with a Multiphysics Model and Sim-to-real Transfer Learning , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Fernando Torres,et al.  Generation of Tactile Data From 3D Vision and Target Robotic Grasps , 2020, IEEE Transactions on Haptics.

[26]  Mike Lambeta,et al.  DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor With Application to In-Hand Manipulation , 2020, IEEE Robotics and Automation Letters.

[27]  Yashraj S. Narang,et al.  Interpreting and predicting tactile signals for the SynTouch BioTac , 2021, Int. J. Robotics Res..

[28]  Nathan F. Lepora,et al.  Slip Detection With a Biomimetic Tactile Sensor , 2018, IEEE Robotics and Automation Letters.

[29]  Gaurav S. Sukhatme,et al.  Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[30]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[31]  Ruzena Bajcsy,et al.  Towards a Soft Fingertip with Integrated Sensing and Actuation , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[32]  Edward H. Adelson,et al.  Active Clothing Material Perception Using Tactile Sensing and Deep Learning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Kris Hauser,et al.  Robust Contact Generation for Robot Simulation with Unstructured Meshes , 2013, ISRR.

[34]  Silvio Savarese,et al.  Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[35]  Jan Peters,et al.  Grip Stabilization of Novel Objects Using Slip Prediction , 2018, IEEE Transactions on Haptics.

[36]  José García Rodríguez,et al.  TactileGCN: A Graph Convolutional Network for Predicting Grasp Stability with Tactile Sensors , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[37]  Jan Peters,et al.  Evaluation of tactile feature extraction for interactive object recognition , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[38]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[39]  Elliott Donlon,et al.  Dense Tactile Force Estimation using GelSlim and inverse FEM , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[40]  Nathan F. Lepora,et al.  Sim-to-Real Transfer for Optical Tactile Sensing , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Veronica J Santos,et al.  Perception of Tactile Directionality via Artificial Fingerpad Deformation and Convolutional Neural Networks , 2020, IEEE Transactions on Haptics.

[42]  Russ Tedrake,et al.  Soft-bubble: A highly compliant dense geometry tactile sensor for robot manipulation , 2019, 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft).

[43]  Daniele Panozzo,et al.  Fast tetrahedral meshing in the wild , 2019, ACM Trans. Graph..

[44]  Ruzena Bajcsy,et al.  Inferring the Material Properties of Granular Media for Robotic Tasks , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[45]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[46]  Emanuel Todorov,et al.  Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system , 2018, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR).

[47]  Yashraj S. Narang,et al.  Interpreting and Predicting Tactile Signals via a Physics-Based and Data-Driven Framework , 2020, Robotics: Science and Systems.

[48]  Jonathan Rossiter,et al.  The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies , 2018, Soft robotics.

[49]  Pablo Gil,et al.  Prediction of Tactile Perception from Vision on Deformable Objects , 2020 .

[50]  Isabella Huang,et al.  High Resolution Soft Tactile Interface for Physical Human-Robot Interaction , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[51]  Veronica J. Santos,et al.  Biomimetic Tactile Sensor Array , 2008, Adv. Robotics.

[52]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[53]  Matei Ciocarlie,et al.  A Sensorized Multicurved Robot Finger With Data-Driven Touch Sensing via Overlapping Light Signals , 2020, IEEE/ASME Transactions on Mechatronics.

[54]  Raffaello D'Andrea,et al.  Learning the sense of touch in simulation: a sim-to-real strategy for vision-based tactile sensing , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[55]  Jitendra Malik,et al.  More Than a Feeling: Learning to Grasp and Regrasp Using Vision and Touch , 2018, IEEE Robotics and Automation Letters.

[56]  Chia-Hsien Lin,et al.  Estimating Point of Contact , Force and Torque in a Biomimetic Tactile Sensor with Deformable Skin , 2013 .

[57]  Chenliang Xu,et al.  Deep Cross-Modal Audio-Visual Generation , 2017, ACM Multimedia.

[58]  Paolo Cignoni,et al.  MeshLab: an Open-Source Mesh Processing Tool , 2008, Eurographics Italian Chapter Conference.

[59]  Dieter Fox,et al.  Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects , 2018, CoRL.

[60]  Raia Hadsell,et al.  From Pixels to Percepts: Highly Robust Edge Perception and Contour Following Using Deep Learning and an Optical Biomimetic Tactile Sensor , 2018, IEEE Robotics and Automation Letters.

[61]  Byron Boots,et al.  Robust Learning of Tactile Force Estimation through Robot Interaction , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[62]  Raffaello D'Andrea,et al.  Ground Truth Force Distribution for Learning-Based Tactile Sensing: A Finite Element Approach , 2019, IEEE Access.

[63]  Edward H. Adelson,et al.  GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force , 2017, Sensors.

[64]  Yashraj S. Narang,et al.  Mechanically Versatile Soft Machines through Laminar Jamming , 2018 .