Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex

The neuronal structure and connectivity underlying receptive field organisation of cells in the cat visual cortex have been investigated. Intracellular recordings were made using a micropipette filled with a histochemical marker, which was injected into the cells after their receptive fields had been characterised. This allowed visualisation of the dendritic and axonal arborisations of functionally identified neurones

[1]  A. Campbell Histological studies on cerebral localisation , 1904, Proceedings of the Royal Society of London.

[2]  J. O'leary,et al.  Structure of the area striata of the cat , 1941 .

[3]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[4]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[5]  R OTSUKA,et al.  [On the structure and segmentation of the cortical center of vision in the cat]. , 1962, Archiv fur Psychiatrie und Nervenkrankheiten, vereinigt mit Zeitschrift fur die gesamte Neurologie und Psychiatrie.

[6]  J SZENTAGOTHAI,et al.  THE USE OF DEGENERATION METHODS IN THE INVESTIGATION OF SHORT NEURONAL CONNEXIONS. , 1965, Progress in brain research.

[7]  R W Guillery,et al.  A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat , 1966, The Journal of comparative neurology.

[8]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[9]  J. Tigges,et al.  Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri) , 1970, The Journal of comparative neurology.

[10]  F. Valverde Short axon neuronal subsystems in the visual cortex of the monkey. , 1971, The International journal of neuroscience.

[11]  Henry Harris The Croonian Lecture, 1971 Cell fusion and the analysis of malignancy , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[13]  J. Stone,et al.  Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. , 1972, Journal of neurophysiology.

[14]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[15]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[16]  J. Jane,et al.  Some observations on axonal degeneration resulting from superficial lesions of the cerebral cortex , 1973, The Journal of comparative neurology.

[17]  S. Levay,et al.  Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi Preparations , 1973, The Journal of comparative neurology.

[18]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[19]  L. Palmer,et al.  An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. , 1974, Brain research.

[20]  J. Stone,et al.  Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells. , 1974, Journal of neurophysiology.

[21]  D. V. van Essen,et al.  Cell structure and function in the visual cortex of the cat , 1974, The Journal of physiology.

[22]  L. Palmer,et al.  Visual receptive fields of single striate corical units projecting to the superior colliculus in the cat. , 1974, Brain research.

[23]  J. Stone,et al.  Retinal distribution and central projections of Y-, X-, and W-cells of the cat's retina. , 1974, Journal of neurophysiology.

[24]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[25]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[26]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[27]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[28]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[29]  E. Jankowska,et al.  Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spinocervical tract cells , 1976, Brain Research.

[30]  J. Stone,et al.  Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. , 1976, Journal of neurophysiology.

[31]  U J McMahan,et al.  The shapes of sensory and motor neurones and the distribution of their synapses in ganglia of the leech: a study using intracellular injection of horseradish peroxidase , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[33]  T. Wiesel,et al.  The distribution of afferents representing the right and left eyes in the cat's visual cortex , 1977, Brain Research.

[34]  J. Adams,et al.  Technical considerations on the use of horseradish peroxidase as a neuronal marker , 1977, Neuroscience.

[35]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[36]  H. Hirsch,et al.  Receptive-field properties of neurons in different laminae of visual cortex of the cat. , 1978, Journal of neurophysiology.

[37]  Y. Olsson,et al.  A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport , 1978, Brain Research.

[38]  D. Hubel,et al.  Anatomical demonstration of orientation columns in macaque monkey , 1978, The Journal of comparative neurology.

[39]  C. Ribak,et al.  Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase , 1978, Journal of neurocytology.

[40]  D. Ferster,et al.  The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat , 1978, The Journal of comparative neurology.