Identification of Dynamic Systems: An Introduction with Applications
暂无分享,去创建一个
[1] Simon Haykin,et al. Neural Networks and Learning Machines , 2010 .
[2] Rolf Isermann,et al. Model-Based Fault Detection for an Actuator Driven by a Brushless DC Motor , 1999 .
[3] Katya Scheinberg,et al. Introduction to derivative-free optimization , 2010, Math. Comput..
[4] D.G. Dudley,et al. Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.
[5] H. Robbins. A Stochastic Approximation Method , 1951 .
[6] Klaus Pfeiffer. Fahrsimulation eines Kraftfahrzeuges mit einem dynamischen Motorenprüfstand , 1997 .
[7] Torsten Söderström,et al. Comparison of three Frisch methods for errors-in-variables identification , 2008 .
[8] Armin Dekorsy,et al. Digitale Signalverarbeitung : Filterung und Spektralanalyse ; mit MATLAB-Übungen , 1998 .
[9] Ján Mikleš,et al. Process Modelling, Identification, and Control , 2010 .
[10] Alan J. Miller. Subset Selection in Regression , 1992 .
[11] B. Breuer,et al. Bremsenhandbuch. Grundlagen, Komponenten, Systeme, Fahrdynamik , 2006 .
[12] Erik Weyer,et al. Non-asymptotic confidence ellipsoids for the least-squares estimate , 2002, Autom..
[13] Guohua Pan,et al. Local Regression and Likelihood , 1999, Technometrics.
[14] R. Isermann,et al. Identifikation und Digitale Regelung eines Trommeltrockners , 1980 .
[15] Bernd Freyermuth. An approach to model based fault diagnosis of industrial robots , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.
[16] A. Laub,et al. Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.
[17] Rik Pintelon,et al. Generation of enhanced initial estimates for wiener systems and harnrnerstein systems , 2003 .
[18] Graham C. Goodwin,et al. Identifiability of errors in variables dynamic systems , 2008, Autom..
[19] Torsten Söderström. An On-line Algorithm for Approximate Maximum Likelihood Identificatioin of Linear Dynamic Systems , 1973 .
[20] H. Kurz,et al. Digital parameter-adaptive control of processes with unknown dead time , 1981, Autom..
[21] Xia Hong,et al. Adaptive Modelling, Estimation and Fusion from Data: A Neurofuzzy Approach , 2002, Advanced information processing.
[22] Hugues Garnier,et al. On instrumental variable-based methods for errors-in-variables model identification , 2008 .
[23] Torsten Söderström,et al. Performance evaluation of methods for identifying continuous-time autoregressive processes , 2000, Autom..
[24] Sippe G. Douma,et al. Identifiability: from qualitative analysis to model structure approximation , 2009 .
[25] Martin Brown,et al. Neurofuzzy adaptive modelling and control , 1994 .
[26] Veit Held. Identifikation der Trägheitsparameter von Industrierobotern , 1989, Robotersysteme.
[27] Petre Stoica,et al. A method for the identification of linear systems using the generalized least squares principle , 1977 .
[28] Torsten Söderström,et al. A covariance matching approach for identifying errors-in-variables systems , 2009, Autom..
[29] R. Isermann,et al. Control Oriented NOx and Soot Models for Diesel Engines , 2010 .
[30] Rolf Isermann,et al. Automatic model selection in local linear model trees (LOLIMOT) for nonlinear system identification of a transport delay process , 1997 .
[31] J. Kiefer,et al. Stochastic Estimation of the Maximum of a Regression Function , 1952 .
[32] Rolf Isermann. Editorial zu SAFEPROCESS 2009, Special Section: Fault-Diagnosis Systems (7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes in Barcelona , 2011 .
[33] Steffen Leonhardt,et al. Model-based identification of a vehicle suspension using parameter estimation and neural networks , 1996 .
[34] V. Panuska. An adaptive recursive-least-squares identification algorithm , 1969 .
[35] A. Klinger. Prior information and bias in sequential estimation , 1968 .
[36] Rolf Isermann,et al. Two-Step Process Identification With Correlation Analysis and Least-Squares Parameter Estimation , 1974 .
[37] Kwan Wong,et al. Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.
[38] I. Miller. Probability, Random Variables, and Stochastic Processes , 1966 .
[39] Jitendra R. Raol,et al. Modelling and Parameter Estimation of Dynamic Systems , 1992 .
[40] S. Ernst,et al. Hinging hyperplane trees for approximation and identification , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[41] Rolf Isermann,et al. Fehlererkennung an semiaktiven und konventionellen Radaufhängungen , 1995 .
[42] V. Verdult,et al. Filtering and System Identification: A Least Squares Approach , 2007 .
[43] Rolf Isermann,et al. Identification of the nonlinear, multivariable behavior of mechatronic combustion engines , 2010 .
[44] Y. Selen,et al. Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.
[45] A. Albert,et al. A Method for Computing Least Squares Estimators that Keep Up with the Data , 1965 .
[46] Thomas Weispfenning. Fault Detection and Diagnosis of Components of the Vehicle Vertical Dynamics , 1997 .
[47] Rolf Isermann,et al. Identification of nonlinear dynamic systems classical methods versus radial basis function networks , 1995, Proceedings of 1995 American Control Conference - ACC'95.
[48] R. Isermann,et al. Comparison of different fault detection algorithms for active body control components: automotive suspension system , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).
[49] Rolf Isermann,et al. Semi-physical modelling of nonlinear processes by means of local model approaches , 2002 .
[50] T. McKelvey. Frequency Domain Identification , 2000 .
[51] T. Ulrich,et al. Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .
[52] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[53] Fredrik Gustafsson,et al. Indirect Tire Pressure Monitoring using Sensor Fusion , 2002 .
[54] N. Sinha,et al. Identification of continuous-time multivariable systems from sampled data† , 1982 .
[55] Sabine Van Huffel,et al. Overview of total least-squares methods , 2007, Signal Process..
[56] H. Unbehauen,et al. Identification of continuous-time systems , 1991 .
[57] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[58] C. A. Canudas De Wit,et al. Adaptive Control for Partially Known Systems: Theory and Applications , 1989 .
[59] Petre Stoica,et al. On the Estimation of Optimal Weights for Instrumental Variable System Identification Methods , 2000 .
[60] Brett Ninness,et al. Some System Identification Challenges and Approaches , 2009 .
[61] Francis J. Doyle,et al. Identification and Control Using Volterra Models , 2001 .
[62] Marco Münchhof. Model-Based Fault Detection for a Hydraulic Servo Axis , 2007, Autom..
[63] Shien-Ming Wu,et al. Time series and system analysis with applications , 1983 .
[64] Tohru Katayama,et al. An approach to closed-loop subspace identification by orthogonal decomposition , 2007, Autom..
[65] D. Sakrison. Stochastic Approximation: A Recursive Method for Solving Regression Problems1 , 1966 .
[66] William H. Press,et al. Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .
[67] D. Prokhorov. Virtual Sensors and Their Automotive Applications , 2005, 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing.
[68] Lennart Ljung,et al. COMPARISONS OF SUBSPACE IDENTIFICATION METHODS FOR SYSTEMS OPERATING ON CLOSED-LOOP , 2005 .
[69] Rik Pintelon,et al. Identification of Continuous-Time Systems Using Arbitrary Signals , 1997 .
[70] Norbert Normann,et al. Reifendruck-Kontrollsystem für alle Fahrzeugklassen , 2000 .
[71] Susanne Töpfer. Approximation nichtlinearer prozesse mit Hinging Hyperplane Baummodellen , 2002 .
[72] Sabine Van Huffel,et al. Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.
[73] Rik Pintelon,et al. System Identification: A Frequency Domain Approach , 2012 .
[74] Jan A Snyman,et al. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .
[75] 莊哲男. Applied System Identification , 1994 .
[76] Bart De Moor,et al. Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .
[77] Gene H. Golub,et al. An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.
[78] Han-Fu Chen,et al. Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control (Heig, C., et al; 2007) [Book Review] , 2008 .
[79] R Kofahl. Self-tuning of pid controllers based on process parameter estimation , 1986 .
[80] A. Haddad. Discrete techniques of parameter estimation--The equation error formulation , 1974 .
[81] Maurice G. Kendall,et al. The advanced theory of statistics , 1945 .
[82] J. Schoukens,et al. Obtaining accurate confidence regions for the estimated zeros and poles in system identification problems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[83] Xiao-Li Hu,et al. New Convergence Results for the Least Squares Identification Algorithm , 2008 .
[84] T. Söderström,et al. Instrumental variable methods for system identification , 1983 .
[85] Håkan Hjalmarsson,et al. Variance-error quantification for identified poles and zeros , 2009, Autom..
[86] Rolf Isermann. Digital control systems (2nd ed.): vol. 2: stochastic control, multivariable control, adaptive control, applications , 1991 .
[87] Rolf Isermann,et al. Longitudinal and lateral control and supervision of autonomous intelligent vehicles , 1996 .
[88] H. Tong. More on autoregressive model fitting with noisy data by Akaike's information criterion (Corresp.) , 1977, IEEE Trans. Inf. Theory.
[89] Olaf Moseler,et al. Design and Application of Digital FIR Differentiators Using Modulating Functions , 2000 .
[90] G. Bierman. Factorization methods for discrete sequential estimation , 1977 .
[91] Rolf Isermann,et al. A model based supervision system for the hydraulics of passenger car braking systems , 2002 .
[92] A. Bos. Parameter Estimation for Scientists and Engineers , 2007 .
[93] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[94] Lennart Ljung,et al. Frequency domain identification of continuous-time output error models, Part I: Uniformly sampled data and frequency function approximation , 2010, Autom..
[95] J. Makhoul,et al. Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.
[96] K.-H. Lachmann. Selbsteinstellende nichtlineare Regelalgorithmen für eine bestimmte Klasse nichtlinearer Prozesse / Self-tuning nonlinear control algorithms for a certain class of nonlinear processes , 1985 .
[97] Michel Gevers. Identification for Control: From the Early Achievements to the Revival of Experiment Design , 2005, CDC 2005.
[98] Mihiar Ayoubi. Nonlinear system identification based on neural networks with locally distributed dynamics and application to technical processes , 1996 .
[99] Hiroshi Oku,et al. Direct subspace model identification of LTI systems operating in closed-loop , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[100] Peter Young,et al. Parameter estimation for continuous-time models - A survey , 1979, Autom..
[101] R. Isermann,et al. Nonlinear System Identification of Block-oriented Systems using Local Affine Models , 2009 .
[102] Rolf Isermann,et al. Mechatronic Systems: Fundamentals , 2003 .
[103] T. Söderström,et al. Bias correction in least-squares identification , 1982 .
[104] D. Neumann. FAULT DIAGNOSIS OF MACHINE-TOOLS BY ESTIMATION OF SIGNAL SPECTRA , 1992 .
[105] J. Lewis,et al. Plant identification in the presence of disturbances and application to digital adaptive systems , 1961, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.
[106] Eberhard Hänsler,et al. Statistische Signale, Grundlagen und Anwendungen , 1991 .
[107] Marcello Farina,et al. Simulation Error Minimization–Based Identification of Polynomial Input–Output Recursive Models , 2009 .
[108] Er-Wei Bai,et al. Iterative identification of Hammerstein systems , 2007, Autom..
[109] Matthias Schorn,et al. Quer- und Längsregelung eines Personenkraftwagens für ein Fahrerassistenzsystem zur Unfallvermeidung , 2007 .
[110] R. Bellman,et al. On structural identifiability , 1970 .
[111] Rolf Isermann,et al. Model-based supervision of a vacuum brake booster , 2003 .
[112] Edison Tse,et al. On the identifiability of parameters , 1971, CDC 1971.
[113] L. Ljung,et al. The role of model validation for assessing the size of the unmodeled dynamics , 1997, IEEE Trans. Autom. Control..
[114] Cram,et al. Discrete-time signal processing : Alan V. Oppenheim, 3rd edition , 2011 .
[115] Olaf Moseler. Mikrocontrollerbasierte Fehlererkennung für mechatronische Komponenten am Beispiel eines elektromechanischen Stellantriebs , 2001 .
[116] B. De Moor,et al. Closed loop subspace system identification , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[117] Norbert Müller. Adaptive Motorregelung beim Ottomotor unter Verwendung von Brennraumdruck-Sensoren , 2003 .
[118] Rolf Isermann. Estimation of physical parameters for dynamic processes with application to an industrial robot , 1991, [1991 Proceedings] 6th Mediterranean Electrotechnical Conference.
[119] Armin Wolfram,et al. Zeitdiskrete Filteralgorithmen zur Erzeugung zeitlicher Ableitungen , 2002 .
[120] S. S. Wilks,et al. Linear Regression Analysis of Economic Time Series. , 1938 .
[121] P. Blessing. Identification of the Input-Output- and Noise-Dynamics of Linear Multivariable Systems , 1979 .
[122] O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .
[123] Peter C. Young. Time Variable Parameter Estimation , 2009 .
[124] Stephen J. Wright,et al. Springer Series in Operations Research , 1999 .
[125] Alfred Brauer. On a new class of Hadamard determinants , 1953 .
[126] M. Levin. Optimum Estimation of Impulse Response in the Presence of Noise , 1960 .
[127] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[128] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems , 1980 .
[129] Karl Johan Åström,et al. Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .
[130] Torsten Söderström,et al. Errors-in-variables methods in system identification , 2018, Autom..
[131] V. Peterka. BAYESIAN APPROACH TO SYSTEM IDENTIFICATION , 1981 .
[132] Harald Straky. Modellgestützter Funktionsentwurf für Kfz-Stellglieder : Regelung der elektromechanischen Ventiltriebaktorik und Fehlerdiagnose der Bremssystemhydraulik , 2003 .
[133] R. Luus,et al. A noniterative method for identification using Hammerstein model , 1971 .
[134] Setsuo Sagara,et al. On Asymptotic Bias of Linear Least Squares Estimator , 1979 .
[135] Michel Verhaegen,et al. Fast-array Recursive Closed-loop Subspace Model Identification , 2009 .
[136] Dietmar Bauer,et al. Asymptotic properties of subspace estimators , 2005, Autom..
[137] Torsten Söderström,et al. Identification of continuous-time AR processes from unevenly sampled data , 2002, Autom..
[138] Rolf Isermann,et al. Towards Applicability of Parameter-Adaptive Control Algorithms , 1981 .
[139] R. M. Staley,et al. On system parameter identifiability , 1970, Inf. Sci..
[140] Graham C. Goodwin,et al. Estimation of Model Quality , 1994 .
[141] Håkan Hjalmarsson,et al. From experiment design to closed-loop control , 2005, Autom..
[142] V. Strejc. Least Squares Parameter Estimation , 1979 .
[143] F ROSENBLATT,et al. The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.
[144] M. W. Sage,et al. Recursive generalised-least-squares procedure for online identification of process parameters , 1969 .
[145] M. Kendall,et al. Kendall's Advanced Theory of Statistics: Volume 1 Distribution Theory , 1987 .
[146] L. Ljung,et al. Maximum Likelihood Identification of Wiener Models , 2008 .
[147] R. Isermann,et al. Modellgestützte Fehlerfrüherkennung am Hauptantrieb eines spanabhebenden Bearbeitungszentrums , 1992 .
[148] H. Kurz,et al. Digital Parameter-adaptive Control of Processes with Unknown Constant or Timevarying Dead Time , 1979 .
[149] Bernard Widrow,et al. Least-mean-square adaptive filters , 2003 .
[150] John E. Moody,et al. The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems , 1991, NIPS.
[151] Gerd Vandersteen,et al. Nonparametric preprocessing in system identification: A powerful tool , 2009, 2009 European Control Conference (ECC).
[152] Howell Tong. Autoregressive model fitting with noisy data by Akaike's information criterion (Corresp.) , 1975, IEEE Trans. Inf. Theory.
[153] Alessandro Chiuso,et al. Consistency analysis of some closed-loop subspace identification methods , 2005, Autom..
[154] Chi-Tsong Chen,et al. Linear System Theory and Design , 1995 .
[155] George M. Siouris. Prozessidentifikation identifikation und Parameterschatzung Dynamischer Prozesse Mit Diskreten Signalen (Process Identification- Identification and Parameter Estimation of Dynamic Processes with Discrete Signals) , 1977, IEEE Transactions on Systems, Man, and Cybernetics.
[156] R. Isermann,et al. Methods for on-line process identification in closed loop , 1975 .
[157] Lennart Ljung,et al. Subspace identification from closed loop data , 1996, Signal Process..
[158] J. Schoukens,et al. Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..
[159] T. Lai,et al. Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .
[160] Brian Armstrong-Hélouvry,et al. Control of machines with friction , 1991, The Kluwer international series in engineering and computer science.
[161] Yves Rolain,et al. Box-Jenkins continuous-time modeling , 2000, Autom..
[162] Vito Volterra,et al. Theory of Functionals and of Integral and Integro-Differential Equations , 2005 .
[163] A. Wald,et al. On the Statistical Treatment of Linear Stochastic Difference Equations , 1943 .
[164] Lennart Ljung,et al. Closed-loop identification revisited , 1999, Autom..
[165] Lennart Ljung,et al. Identification of Linear, Multivariable Process Dynamics using Closed Loop Experiments , 1974 .
[166] H. Kushner,et al. Stochastic Approximation and Recursive Algorithms and Applications , 2003 .
[167] Dorothea Heiss-Czedik,et al. An Introduction to Genetic Algorithms. , 1997, Artificial Life.
[168] R. Specht. Ermittlung von Getriebelose und Getriebereibung bei Robotergelenken mit Gleichstromantrieben , 1986 .
[169] Lennart Ljung,et al. Experiments with Identification of Continuous Time Models , 2009 .
[170] Michel Verhaegen,et al. Subspace Identification of a Class of Large-Scale Systems , 2008 .
[171] Bernard Widrow,et al. Adaptive switching circuits , 1988 .
[172] John B. Moore,et al. Towards Bias Elimination in Least Squares Identification via Detection Techniques , 1979 .
[173] Lennart Ljung,et al. Aspects and Experiences of User Choices in Subspace Identification Methods , 2003 .
[174] P. Eykhoff. System Identification Parameter and State Estimation , 1974 .
[175] H. Hensel,et al. Determination of Order and Deadtime for Multivariable Discrete-Time Parameter Estimation Methods , 1985 .
[176] J. Willems,et al. Application of structured total least squares for system identification and model reduction , 2005, IEEE Transactions on Automatic Control.
[177] T. Söderström. On model structure testing in system identification , 1977 .
[178] L. Mcbride,et al. A technique for the identification of linear systems , 1965 .
[179] Biao Huang,et al. System Identification , 2000, Control Theory for Physicists.
[180] W. T. Federer,et al. Stochastic Approximation and NonLinear Regression , 2003 .
[181] Liuping Wang,et al. Identification of Continuous-time Models from Sampled Data , 2008 .
[182] W. Pitts,et al. A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.
[183] Susanne Ernst,et al. Identification with Dynamic Neural Networks - Architectures, Comparisons, Applications , 1997 .
[184] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[185] Susanne Töpfer. Hierarchische neuronale Modelle für die Identifikation nichtlinearer Systeme , 2002 .
[186] P. Young. An instrumental variable method for real-time identification of a noisy process , 1970 .
[187] Bart De Moor,et al. Continuous-time frequency domain subspace system identification , 1996, Signal Process..
[188] Torsten Söderström,et al. Perspectives on errors-in-variables estimation for dynamic systems , 2002, Signal Process..
[189] Rolf Isermann. Process fault diagnosis based on process model knowledge , 1988 .
[190] Michel Verhaegen,et al. Application of a subspace model identification technique to identify LTI systems operating in closed-loop , 1993, Autom..
[191] Lennart Ljung,et al. A Comparative Study of Recursive Identification Methods , 1974 .
[192] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[193] John E. Gibson,et al. Nonlinear Automatic Control , 1963 .
[194] Roderick Murray-Smith,et al. Multiple Model Approaches to Modelling and Control , 1997 .
[195] L. Piroddi,et al. An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .
[196] Minh Q. Phan,et al. Identification and Control of Mechanical Systems: System Identification , 2001 .
[197] J. Makhoul. Correction to "Linear prediction: A tutorial review" , 1976 .
[198] Guanrong Chen,et al. Kalman Filtering with Real-time Applications , 1987 .
[199] Hartmut Hensel. Methoden des rechnergestützten Entwurfs und Echtzeiteinsatzes zeitdiskreter Mehrgrössenregelungen und ihre Realisierung in einem CAD-System , 1987 .
[200] E. Lehmann. Testing Statistical Hypotheses , 1960 .
[201] P. Eykhoff,et al. Input signal design for system identification: a comparative analysis , 1985 .
[202] Hugues Garnier,et al. Numerical illustrations of the relevance of direct continuous-time model identification , 2002 .
[203] Ben Jann,et al. Diagnostik von Regressionsschätzungen bei kleinen Stichproben , 2006 .
[204] James Durbin,et al. Errors in variables , 1954 .
[205] David R. Anderson,et al. Model selection and multimodel inference : a practical information-theoretic approach , 2003 .
[206] T. Bohlin. On the problem of ambiguities in maximum likelihood identification , 1971 .
[207] Maurice G. Kendall,et al. The advanced theory of statistics , 1945 .
[208] Michel Verhaegen,et al. Closed-loop identification using canonical correlation analysis , 1999, 1999 European Control Conference (ECC).
[209] Lennart Ljung,et al. Estimate Physical Parameters by Black Box Modeling , 2003 .
[210] Rolf Isermann,et al. Stationary Global-Local Emission Models of a CR-Diesel Engine with Adaptive Regressor Selection for Measurements of Airpath and Combustion , 2010 .
[211] Raman K. Mehra,et al. Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .
[212] Rüdiger Kofahl. Robuste parameteradaptive Regelungen , 1988 .
[213] P. Young. The use of linear regression and related procedures for the identification of dynamic processes , 1968 .
[214] Peter C. Young,et al. Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .
[215] Β. L. HO,et al. Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .
[216] Karl Johan Åström,et al. BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.
[217] Gene H. Golub,et al. Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.
[218] Michael M. Fitelson,et al. Notes on maximum-entropy processing (Corresp.) , 1973, IEEE Trans. Inf. Theory.
[219] Mohinder S. Grewal,et al. Kalman Filtering: Theory and Practice Using MATLAB , 2001 .
[220] Adrian Wills,et al. Issues in sampling and estimating continuous-time models with stochastic disturbances , 2008 .
[221] P. Young. Optimal IV identification and estimation of continuous-time TF models , 2002 .
[222] T. R. Fortescue,et al. Implementation of self-tuning regulators with variable forgetting factors , 1981, Autom..
[223] Bernd Freyermuth. Wissensbasierte Fehlerdiagnose am Beispiel eines Industrieroboters , 1993 .
[224] Rolf Isermann,et al. Model Based Fault Detection of Vehicle Suspension and Hydraulic Brake Systems , 2000 .
[225] J. Blum. Multidimensional Stochastic Approximation Methods , 1954 .
[226] Dieter Wagner. Tire-IQ-System. Ein neues Reifendruck-Kontrollsystem , 2004 .
[227] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[228] Olav Reiersol,et al. Confluence Analysis by Means of Lag Moments and Other Methods of Confluence Analysis , 1941 .
[229] Giuseppe Fedele,et al. On the inversion of the Vandermonde matrix , 2006, Appl. Math. Comput..
[230] Rolf Isermann,et al. Fault management for a Three Mass Torsion Oscillator , 2009, 2009 European Control Conference (ECC).
[231] Bart De Moor,et al. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..
[232] Karl Johan Åström,et al. Lectures on the Identification Problem : The Least Squares Method , 1968 .
[233] Robert Babuška,et al. An overview of fuzzy modeling for control , 1996 .
[234] A. Ravindran,et al. Engineering Optimization: Methods and Applications , 2006 .
[235] Thomas Weispfenning,et al. Überwachung und Diagnose an Radaufhängungen , 2002 .
[236] G. Saridis,et al. A new algorithm for linear system identification , 1968 .
[237] Peter C. Young,et al. A recursive approach to time-series analysis for multi-variable systems , 1977 .
[238] Václav Peterka,et al. A square root filter for real time multivariate regression , 1975, Kybernetika.
[239] L. Ljung,et al. Fast calculation of gain matrices for recursive estimation schemes , 1978 .
[240] Ralf Zimmerschied. Identifikation nichtlinearer Prozesse mit dynamischen lokalaffinen Modellen - Maßnahmen zur Reduktion von Bias und Varianz , 2009, Autom..
[241] Heinz Unbehauen,et al. Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..
[242] Lennart Ljung,et al. Identification of processes in closed loop - identifiability and accuracy aspects , 1977, Autom..
[243] Thomas Pfeufer. Application of model-based fault detection and diagnosis to the quality assurance of an automotive actuator , 1997 .
[244] Pablo A. Parrilo,et al. Initialization of Physical Parameter Estimates , 2003 .
[245] Elie Bienenstock,et al. Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.
[246] G.C. Goodwin,et al. Evaluation and comparison of robust optimal experiment design criteria , 2006, 2006 American Control Conference.
[247] A. Schumann. INID - A Computer-Software for Experimental Modeling , 1991 .
[248] E. C. Levy. Complex-curve fitting , 1959, IRE Transactions on Automatic Control.
[249] R. Isermann,et al. Identification of Nonlinear Static Processes with Local Polynomial Regression and Subset Selection , 2009 .
[250] Lennart Ljung,et al. Optimality analysis of the Two-Stage Algorithm for Hammerstein system identification , 2009 .
[251] Christiaan Heij,et al. Introduction to mathematical systems theory , 1997 .
[252] R. H. Myers. Classical and modern regression with applications , 1986 .
[253] A. Bryson,et al. Discrete square root filtering: A survey of current techniques , 1971 .
[254] B. Freyermuth. KNOWLEDGE BASED INCIPIENT FAULT DIAGNOSIS OF INDUSTRIAL ROBOTS , 1992 .
[255] Rolf Isermann,et al. Regularisierungsverfahren für die Identifikation mittels lokal-affiner Modelle (Regularization Techniques for Identification Using Local-Affine Models) , 2008, Autom..
[256] K. R. Godfrey. Three-level m sequences , 1966 .
[257] Manfred Schmitt. Untersuchungen zur Realisierung mehrdimensionaler lernfähiger Kennfelder in Großserien-Steuergeräten , 1995 .
[258] Rolf Isermann,et al. Identification of vehicle parameters using stationary driving maneuvers , 2007 .