Identification of Dynamic Systems: An Introduction with Applications

Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

[1]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[2]  Rolf Isermann,et al.  Model-Based Fault Detection for an Actuator Driven by a Brushless DC Motor , 1999 .

[3]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[4]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[5]  H. Robbins A Stochastic Approximation Method , 1951 .

[6]  Klaus Pfeiffer Fahrsimulation eines Kraftfahrzeuges mit einem dynamischen Motorenprüfstand , 1997 .

[7]  Torsten Söderström,et al.  Comparison of three Frisch methods for errors-in-variables identification , 2008 .

[8]  Armin Dekorsy,et al.  Digitale Signalverarbeitung : Filterung und Spektralanalyse ; mit MATLAB-Übungen , 1998 .

[9]  Ján Mikleš,et al.  Process Modelling, Identification, and Control , 2010 .

[10]  Alan J. Miller Subset Selection in Regression , 1992 .

[11]  B. Breuer,et al.  Bremsenhandbuch. Grundlagen, Komponenten, Systeme, Fahrdynamik , 2006 .

[12]  Erik Weyer,et al.  Non-asymptotic confidence ellipsoids for the least-squares estimate , 2002, Autom..

[13]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[14]  R. Isermann,et al.  Identifikation und Digitale Regelung eines Trommeltrockners , 1980 .

[15]  Bernd Freyermuth An approach to model based fault diagnosis of industrial robots , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[16]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[17]  Rik Pintelon,et al.  Generation of enhanced initial estimates for wiener systems and harnrnerstein systems , 2003 .

[18]  Graham C. Goodwin,et al.  Identifiability of errors in variables dynamic systems , 2008, Autom..

[19]  Torsten Söderström An On-line Algorithm for Approximate Maximum Likelihood Identificatioin of Linear Dynamic Systems , 1973 .

[20]  H. Kurz,et al.  Digital parameter-adaptive control of processes with unknown dead time , 1981, Autom..

[21]  Xia Hong,et al.  Adaptive Modelling, Estimation and Fusion from Data: A Neurofuzzy Approach , 2002, Advanced information processing.

[22]  Hugues Garnier,et al.  On instrumental variable-based methods for errors-in-variables model identification , 2008 .

[23]  Torsten Söderström,et al.  Performance evaluation of methods for identifying continuous-time autoregressive processes , 2000, Autom..

[24]  Sippe G. Douma,et al.  Identifiability: from qualitative analysis to model structure approximation , 2009 .

[25]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[26]  Veit Held Identifikation der Trägheitsparameter von Industrierobotern , 1989, Robotersysteme.

[27]  Petre Stoica,et al.  A method for the identification of linear systems using the generalized least squares principle , 1977 .

[28]  Torsten Söderström,et al.  A covariance matching approach for identifying errors-in-variables systems , 2009, Autom..

[29]  R. Isermann,et al.  Control Oriented NOx and Soot Models for Diesel Engines , 2010 .

[30]  Rolf Isermann,et al.  Automatic model selection in local linear model trees (LOLIMOT) for nonlinear system identification of a transport delay process , 1997 .

[31]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[32]  Rolf Isermann Editorial zu SAFEPROCESS 2009, Special Section: Fault-Diagnosis Systems (7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes in Barcelona , 2011 .

[33]  Steffen Leonhardt,et al.  Model-based identification of a vehicle suspension using parameter estimation and neural networks , 1996 .

[34]  V. Panuska An adaptive recursive-least-squares identification algorithm , 1969 .

[35]  A. Klinger Prior information and bias in sequential estimation , 1968 .

[36]  Rolf Isermann,et al.  Two-Step Process Identification With Correlation Analysis and Least-Squares Parameter Estimation , 1974 .

[37]  Kwan Wong,et al.  Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.

[38]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[39]  Jitendra R. Raol,et al.  Modelling and Parameter Estimation of Dynamic Systems , 1992 .

[40]  S. Ernst,et al.  Hinging hyperplane trees for approximation and identification , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[41]  Rolf Isermann,et al.  Fehlererkennung an semiaktiven und konventionellen Radaufhängungen , 1995 .

[42]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[43]  Rolf Isermann,et al.  Identification of the nonlinear, multivariable behavior of mechatronic combustion engines , 2010 .

[44]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[45]  A. Albert,et al.  A Method for Computing Least Squares Estimators that Keep Up with the Data , 1965 .

[46]  Thomas Weispfenning Fault Detection and Diagnosis of Components of the Vehicle Vertical Dynamics , 1997 .

[47]  Rolf Isermann,et al.  Identification of nonlinear dynamic systems classical methods versus radial basis function networks , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[48]  R. Isermann,et al.  Comparison of different fault detection algorithms for active body control components: automotive suspension system , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[49]  Rolf Isermann,et al.  Semi-physical modelling of nonlinear processes by means of local model approaches , 2002 .

[50]  T. McKelvey Frequency Domain Identification , 2000 .

[51]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[52]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[53]  Fredrik Gustafsson,et al.  Indirect Tire Pressure Monitoring using Sensor Fusion , 2002 .

[54]  N. Sinha,et al.  Identification of continuous-time multivariable systems from sampled data† , 1982 .

[55]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[56]  H. Unbehauen,et al.  Identification of continuous-time systems , 1991 .

[57]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[58]  C. A. Canudas De Wit,et al.  Adaptive Control for Partially Known Systems: Theory and Applications , 1989 .

[59]  Petre Stoica,et al.  On the Estimation of Optimal Weights for Instrumental Variable System Identification Methods , 2000 .

[60]  Brett Ninness,et al.  Some System Identification Challenges and Approaches , 2009 .

[61]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[62]  Marco Münchhof Model-Based Fault Detection for a Hydraulic Servo Axis , 2007, Autom..

[63]  Shien-Ming Wu,et al.  Time series and system analysis with applications , 1983 .

[64]  Tohru Katayama,et al.  An approach to closed-loop subspace identification by orthogonal decomposition , 2007, Autom..

[65]  D. Sakrison Stochastic Approximation: A Recursive Method for Solving Regression Problems1 , 1966 .

[66]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[67]  D. Prokhorov Virtual Sensors and Their Automotive Applications , 2005, 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[68]  Lennart Ljung,et al.  COMPARISONS OF SUBSPACE IDENTIFICATION METHODS FOR SYSTEMS OPERATING ON CLOSED-LOOP , 2005 .

[69]  Rik Pintelon,et al.  Identification of Continuous-Time Systems Using Arbitrary Signals , 1997 .

[70]  Norbert Normann,et al.  Reifendruck-Kontrollsystem für alle Fahrzeugklassen , 2000 .

[71]  Susanne Töpfer Approximation nichtlinearer prozesse mit Hinging Hyperplane Baummodellen , 2002 .

[72]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[73]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[74]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .

[75]  莊哲男 Applied System Identification , 1994 .

[76]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[77]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[78]  Han-Fu Chen,et al.  Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control (Heig, C., et al; 2007) [Book Review] , 2008 .

[79]  R Kofahl Self-tuning of pid controllers based on process parameter estimation , 1986 .

[80]  A. Haddad Discrete techniques of parameter estimation--The equation error formulation , 1974 .

[81]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[82]  J. Schoukens,et al.  Obtaining accurate confidence regions for the estimated zeros and poles in system identification problems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[83]  Xiao-Li Hu,et al.  New Convergence Results for the Least Squares Identification Algorithm , 2008 .

[84]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[85]  Håkan Hjalmarsson,et al.  Variance-error quantification for identified poles and zeros , 2009, Autom..

[86]  Rolf Isermann Digital control systems (2nd ed.): vol. 2: stochastic control, multivariable control, adaptive control, applications , 1991 .

[87]  Rolf Isermann,et al.  Longitudinal and lateral control and supervision of autonomous intelligent vehicles , 1996 .

[88]  H. Tong More on autoregressive model fitting with noisy data by Akaike's information criterion (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[89]  Olaf Moseler,et al.  Design and Application of Digital FIR Differentiators Using Modulating Functions , 2000 .

[90]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[91]  Rolf Isermann,et al.  A model based supervision system for the hydraulics of passenger car braking systems , 2002 .

[92]  A. Bos Parameter Estimation for Scientists and Engineers , 2007 .

[93]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[94]  Lennart Ljung,et al.  Frequency domain identification of continuous-time output error models, Part I: Uniformly sampled data and frequency function approximation , 2010, Autom..

[95]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[96]  K.-H. Lachmann Selbsteinstellende nichtlineare Regelalgorithmen für eine bestimmte Klasse nichtlinearer Prozesse / Self-tuning nonlinear control algorithms for a certain class of nonlinear processes , 1985 .

[97]  Michel Gevers Identification for Control: From the Early Achievements to the Revival of Experiment Design , 2005, CDC 2005.

[98]  Mihiar Ayoubi Nonlinear system identification based on neural networks with locally distributed dynamics and application to technical processes , 1996 .

[99]  Hiroshi Oku,et al.  Direct subspace model identification of LTI systems operating in closed-loop , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[100]  Peter Young,et al.  Parameter estimation for continuous-time models - A survey , 1979, Autom..

[101]  R. Isermann,et al.  Nonlinear System Identification of Block-oriented Systems using Local Affine Models , 2009 .

[102]  Rolf Isermann,et al.  Mechatronic Systems: Fundamentals , 2003 .

[103]  T. Söderström,et al.  Bias correction in least-squares identification , 1982 .

[104]  D. Neumann FAULT DIAGNOSIS OF MACHINE-TOOLS BY ESTIMATION OF SIGNAL SPECTRA , 1992 .

[105]  J. Lewis,et al.  Plant identification in the presence of disturbances and application to digital adaptive systems , 1961, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[106]  Eberhard Hänsler,et al.  Statistische Signale, Grundlagen und Anwendungen , 1991 .

[107]  Marcello Farina,et al.  Simulation Error Minimization–Based Identification of Polynomial Input–Output Recursive Models , 2009 .

[108]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[109]  Matthias Schorn,et al.  Quer- und Längsregelung eines Personenkraftwagens für ein Fahrerassistenzsystem zur Unfallvermeidung , 2007 .

[110]  R. Bellman,et al.  On structural identifiability , 1970 .

[111]  Rolf Isermann,et al.  Model-based supervision of a vacuum brake booster , 2003 .

[112]  Edison Tse,et al.  On the identifiability of parameters , 1971, CDC 1971.

[113]  L. Ljung,et al.  The role of model validation for assessing the size of the unmodeled dynamics , 1997, IEEE Trans. Autom. Control..

[114]  Cram,et al.  Discrete-time signal processing : Alan V. Oppenheim, 3rd edition , 2011 .

[115]  Olaf Moseler Mikrocontrollerbasierte Fehlererkennung für mechatronische Komponenten am Beispiel eines elektromechanischen Stellantriebs , 2001 .

[116]  B. De Moor,et al.  Closed loop subspace system identification , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[117]  Norbert Müller Adaptive Motorregelung beim Ottomotor unter Verwendung von Brennraumdruck-Sensoren , 2003 .

[118]  Rolf Isermann Estimation of physical parameters for dynamic processes with application to an industrial robot , 1991, [1991 Proceedings] 6th Mediterranean Electrotechnical Conference.

[119]  Armin Wolfram,et al.  Zeitdiskrete Filteralgorithmen zur Erzeugung zeitlicher Ableitungen , 2002 .

[120]  S. S. Wilks,et al.  Linear Regression Analysis of Economic Time Series. , 1938 .

[121]  P. Blessing Identification of the Input-Output- and Noise-Dynamics of Linear Multivariable Systems , 1979 .

[122]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[123]  Peter C. Young Time Variable Parameter Estimation , 2009 .

[124]  Stephen J. Wright,et al.  Springer Series in Operations Research , 1999 .

[125]  Alfred Brauer On a new class of Hadamard determinants , 1953 .

[126]  M. Levin Optimum Estimation of Impulse Response in the Presence of Noise , 1960 .

[127]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[128]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[129]  Karl Johan Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .

[130]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[131]  V. Peterka BAYESIAN APPROACH TO SYSTEM IDENTIFICATION , 1981 .

[132]  Harald Straky Modellgestützter Funktionsentwurf für Kfz-Stellglieder : Regelung der elektromechanischen Ventiltriebaktorik und Fehlerdiagnose der Bremssystemhydraulik , 2003 .

[133]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[134]  Setsuo Sagara,et al.  On Asymptotic Bias of Linear Least Squares Estimator , 1979 .

[135]  Michel Verhaegen,et al.  Fast-array Recursive Closed-loop Subspace Model Identification , 2009 .

[136]  Dietmar Bauer,et al.  Asymptotic properties of subspace estimators , 2005, Autom..

[137]  Torsten Söderström,et al.  Identification of continuous-time AR processes from unevenly sampled data , 2002, Autom..

[138]  Rolf Isermann,et al.  Towards Applicability of Parameter-Adaptive Control Algorithms , 1981 .

[139]  R. M. Staley,et al.  On system parameter identifiability , 1970, Inf. Sci..

[140]  Graham C. Goodwin,et al.  Estimation of Model Quality , 1994 .

[141]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[142]  V. Strejc Least Squares Parameter Estimation , 1979 .

[143]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[144]  M. W. Sage,et al.  Recursive generalised-least-squares procedure for online identification of process parameters , 1969 .

[145]  M. Kendall,et al.  Kendall's Advanced Theory of Statistics: Volume 1 Distribution Theory , 1987 .

[146]  L. Ljung,et al.  Maximum Likelihood Identification of Wiener Models , 2008 .

[147]  R. Isermann,et al.  Modellgestützte Fehlerfrüherkennung am Hauptantrieb eines spanabhebenden Bearbeitungszentrums , 1992 .

[148]  H. Kurz,et al.  Digital Parameter-adaptive Control of Processes with Unknown Constant or Timevarying Dead Time , 1979 .

[149]  Bernard Widrow,et al.  Least-mean-square adaptive filters , 2003 .

[150]  John E. Moody,et al.  The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems , 1991, NIPS.

[151]  Gerd Vandersteen,et al.  Nonparametric preprocessing in system identification: A powerful tool , 2009, 2009 European Control Conference (ECC).

[152]  Howell Tong Autoregressive model fitting with noisy data by Akaike's information criterion (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[153]  Alessandro Chiuso,et al.  Consistency analysis of some closed-loop subspace identification methods , 2005, Autom..

[154]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[155]  George M. Siouris Prozessidentifikation identifikation und Parameterschatzung Dynamischer Prozesse Mit Diskreten Signalen (Process Identification- Identification and Parameter Estimation of Dynamic Processes with Discrete Signals) , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[156]  R. Isermann,et al.  Methods for on-line process identification in closed loop , 1975 .

[157]  Lennart Ljung,et al.  Subspace identification from closed loop data , 1996, Signal Process..

[158]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[159]  T. Lai,et al.  Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .

[160]  Brian Armstrong-Hélouvry,et al.  Control of machines with friction , 1991, The Kluwer international series in engineering and computer science.

[161]  Yves Rolain,et al.  Box-Jenkins continuous-time modeling , 2000, Autom..

[162]  Vito Volterra,et al.  Theory of Functionals and of Integral and Integro-Differential Equations , 2005 .

[163]  A. Wald,et al.  On the Statistical Treatment of Linear Stochastic Difference Equations , 1943 .

[164]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[165]  Lennart Ljung,et al.  Identification of Linear, Multivariable Process Dynamics using Closed Loop Experiments , 1974 .

[166]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[167]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[168]  R. Specht Ermittlung von Getriebelose und Getriebereibung bei Robotergelenken mit Gleichstromantrieben , 1986 .

[169]  Lennart Ljung,et al.  Experiments with Identification of Continuous Time Models , 2009 .

[170]  Michel Verhaegen,et al.  Subspace Identification of a Class of Large-Scale Systems , 2008 .

[171]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[172]  John B. Moore,et al.  Towards Bias Elimination in Least Squares Identification via Detection Techniques , 1979 .

[173]  Lennart Ljung,et al.  Aspects and Experiences of User Choices in Subspace Identification Methods , 2003 .

[174]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[175]  H. Hensel,et al.  Determination of Order and Deadtime for Multivariable Discrete-Time Parameter Estimation Methods , 1985 .

[176]  J. Willems,et al.  Application of structured total least squares for system identification and model reduction , 2005, IEEE Transactions on Automatic Control.

[177]  T. Söderström On model structure testing in system identification , 1977 .

[178]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[179]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[180]  W. T. Federer,et al.  Stochastic Approximation and NonLinear Regression , 2003 .

[181]  Liuping Wang,et al.  Identification of Continuous-time Models from Sampled Data , 2008 .

[182]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[183]  Susanne Ernst,et al.  Identification with Dynamic Neural Networks - Architectures, Comparisons, Applications , 1997 .

[184]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[185]  Susanne Töpfer Hierarchische neuronale Modelle für die Identifikation nichtlinearer Systeme , 2002 .

[186]  P. Young An instrumental variable method for real-time identification of a noisy process , 1970 .

[187]  Bart De Moor,et al.  Continuous-time frequency domain subspace system identification , 1996, Signal Process..

[188]  Torsten Söderström,et al.  Perspectives on errors-in-variables estimation for dynamic systems , 2002, Signal Process..

[189]  Rolf Isermann Process fault diagnosis based on process model knowledge , 1988 .

[190]  Michel Verhaegen,et al.  Application of a subspace model identification technique to identify LTI systems operating in closed-loop , 1993, Autom..

[191]  Lennart Ljung,et al.  A Comparative Study of Recursive Identification Methods , 1974 .

[192]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[193]  John E. Gibson,et al.  Nonlinear Automatic Control , 1963 .

[194]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[195]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[196]  Minh Q. Phan,et al.  Identification and Control of Mechanical Systems: System Identification , 2001 .

[197]  J. Makhoul Correction to "Linear prediction: A tutorial review" , 1976 .

[198]  Guanrong Chen,et al.  Kalman Filtering with Real-time Applications , 1987 .

[199]  Hartmut Hensel Methoden des rechnergestützten Entwurfs und Echtzeiteinsatzes zeitdiskreter Mehrgrössenregelungen und ihre Realisierung in einem CAD-System , 1987 .

[200]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[201]  P. Eykhoff,et al.  Input signal design for system identification: a comparative analysis , 1985 .

[202]  Hugues Garnier,et al.  Numerical illustrations of the relevance of direct continuous-time model identification , 2002 .

[203]  Ben Jann,et al.  Diagnostik von Regressionsschätzungen bei kleinen Stichproben , 2006 .

[204]  James Durbin,et al.  Errors in variables , 1954 .

[205]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[206]  T. Bohlin On the problem of ambiguities in maximum likelihood identification , 1971 .

[207]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[208]  Michel Verhaegen,et al.  Closed-loop identification using canonical correlation analysis , 1999, 1999 European Control Conference (ECC).

[209]  Lennart Ljung,et al.  Estimate Physical Parameters by Black Box Modeling , 2003 .

[210]  Rolf Isermann,et al.  Stationary Global-Local Emission Models of a CR-Diesel Engine with Adaptive Regressor Selection for Measurements of Airpath and Combustion , 2010 .

[211]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[212]  Rüdiger Kofahl Robuste parameteradaptive Regelungen , 1988 .

[213]  P. Young The use of linear regression and related procedures for the identification of dynamic processes , 1968 .

[214]  Peter C. Young,et al.  Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .

[215]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .

[216]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[217]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[218]  Michael M. Fitelson,et al.  Notes on maximum-entropy processing (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[219]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[220]  Adrian Wills,et al.  Issues in sampling and estimating continuous-time models with stochastic disturbances , 2008 .

[221]  P. Young Optimal IV identification and estimation of continuous-time TF models , 2002 .

[222]  T. R. Fortescue,et al.  Implementation of self-tuning regulators with variable forgetting factors , 1981, Autom..

[223]  Bernd Freyermuth Wissensbasierte Fehlerdiagnose am Beispiel eines Industrieroboters , 1993 .

[224]  Rolf Isermann,et al.  Model Based Fault Detection of Vehicle Suspension and Hydraulic Brake Systems , 2000 .

[225]  J. Blum Multidimensional Stochastic Approximation Methods , 1954 .

[226]  Dieter Wagner Tire-IQ-System. Ein neues Reifendruck-Kontrollsystem , 2004 .

[227]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[228]  Olav Reiersol,et al.  Confluence Analysis by Means of Lag Moments and Other Methods of Confluence Analysis , 1941 .

[229]  Giuseppe Fedele,et al.  On the inversion of the Vandermonde matrix , 2006, Appl. Math. Comput..

[230]  Rolf Isermann,et al.  Fault management for a Three Mass Torsion Oscillator , 2009, 2009 European Control Conference (ECC).

[231]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[232]  Karl Johan Åström,et al.  Lectures on the Identification Problem : The Least Squares Method , 1968 .

[233]  Robert Babuška,et al.  An overview of fuzzy modeling for control , 1996 .

[234]  A. Ravindran,et al.  Engineering Optimization: Methods and Applications , 2006 .

[235]  Thomas Weispfenning,et al.  Überwachung und Diagnose an Radaufhängungen , 2002 .

[236]  G. Saridis,et al.  A new algorithm for linear system identification , 1968 .

[237]  Peter C. Young,et al.  A recursive approach to time-series analysis for multi-variable systems , 1977 .

[238]  Václav Peterka,et al.  A square root filter for real time multivariate regression , 1975, Kybernetika.

[239]  L. Ljung,et al.  Fast calculation of gain matrices for recursive estimation schemes , 1978 .

[240]  Ralf Zimmerschied Identifikation nichtlinearer Prozesse mit dynamischen lokalaffinen Modellen - Maßnahmen zur Reduktion von Bias und Varianz , 2009, Autom..

[241]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[242]  Lennart Ljung,et al.  Identification of processes in closed loop - identifiability and accuracy aspects , 1977, Autom..

[243]  Thomas Pfeufer Application of model-based fault detection and diagnosis to the quality assurance of an automotive actuator , 1997 .

[244]  Pablo A. Parrilo,et al.  Initialization of Physical Parameter Estimates , 2003 .

[245]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[246]  G.C. Goodwin,et al.  Evaluation and comparison of robust optimal experiment design criteria , 2006, 2006 American Control Conference.

[247]  A. Schumann INID - A Computer-Software for Experimental Modeling , 1991 .

[248]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[249]  R. Isermann,et al.  Identification of Nonlinear Static Processes with Local Polynomial Regression and Subset Selection , 2009 .

[250]  Lennart Ljung,et al.  Optimality analysis of the Two-Stage Algorithm for Hammerstein system identification , 2009 .

[251]  Christiaan Heij,et al.  Introduction to mathematical systems theory , 1997 .

[252]  R. H. Myers Classical and modern regression with applications , 1986 .

[253]  A. Bryson,et al.  Discrete square root filtering: A survey of current techniques , 1971 .

[254]  B. Freyermuth KNOWLEDGE BASED INCIPIENT FAULT DIAGNOSIS OF INDUSTRIAL ROBOTS , 1992 .

[255]  Rolf Isermann,et al.  Regularisierungsverfahren für die Identifikation mittels lokal-affiner Modelle (Regularization Techniques for Identification Using Local-Affine Models) , 2008, Autom..

[256]  K. R. Godfrey Three-level m sequences , 1966 .

[257]  Manfred Schmitt Untersuchungen zur Realisierung mehrdimensionaler lernfähiger Kennfelder in Großserien-Steuergeräten , 1995 .

[258]  Rolf Isermann,et al.  Identification of vehicle parameters using stationary driving maneuvers , 2007 .